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Abstract 

In clinical breast cancer intervention, selection of the optimal treatment protocol based on 

predictive biomarkers remains an elusive goal. Here, we present a modeling tool to predict the 

likelihood of breast cancer response to neoadjuvant chemotherapy using patient specific tumor 

vasculature biomarkers. A semi-automated analysis was implemented and performed on 3990 

histological images from 48 patients, with 10–208 images analyzed for each patient. We applied 

a histology-based model to resected primary breast cancer tumors (n = 30), and then evaluated a 

cohort of patients (n = 18) undergoing neoadjuvant chemotherapy, collecting pre- and post-

treatment pathology specimens and MRI data. We found that core biopsy samples can be used 

with acceptable accuracy (r = 0.76) to determine histological parameters representative of the 

whole tissue region. Analysis of model histology parameters obtained from tumor vasculature 

measurements, specifically diffusion distance divided by radius of drug source (L/rb) and blood 

volume fraction (BVF), provides a statistically significant separation of patients obtaining a 

pathologic complete response (pCR) from those that do not (Student’s t-test; p < 0.05). With this 

model, it is feasible to evaluate primary breast tumor vasculature biomarkers in a patient specific 

manner, thereby allowing a precision approach to breast cancer treatment.  
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List of Abbreviations 

 

AC: Doxorubicin (Adriamycin) and cyclophosphamide, chemotherapy agents 

BVF: Blood volume fraction, ratio of blood vessel-to-tissue area in histopathology, or from MRI  

CPS+EG: Pretreatment clinical stage and post-treatment pathologic stage (CPS score) as well as 

estrogen receptor status and tumor grade (EG) scores 

MCE-MRI: Multiphase contrast-enhanced magnetic resonance imaging 

DCE-MRI: Dynamic contrast-enhanced magnetic resonance imaging 

DFS: Disease-free survival 

ER, PR, HER2: Tumor receptor status for estrogen, progesterone, and human epidermal growth 

factor 2 

fkill:  Fraction of dead tumor, calculated as a function of L, rb, and BVF 

L:  Diffusion penetration distance, the distance drug may diffuse away from a vessel and into the 

surrounding tissue at clinically useful concentrations 

OS: Overall survival 

pCR: Pathologic complete response 

rb: Radius of drug source, blood vessels in the tumor region 

ROI: Region of interest 

T: Paclitaxel (Taxol), a chemotherapy agent 

TILs: Tumor infiltrating lymphocytes 

TN: Triple negative hormone receptor status, tumor is negative for ER, PR, and HER2 receptors. 
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Introduction 

 

In the United States, breast cancer is the most common female cancer and is the second most 

common cause of cancer death in women (1). While major advances have been achieved in 

treatment of early stage breast cancer, many women still die from metastatic disease. The use of 

neoadjuvant chemotherapy has recently emerged as a promising method to increase treatment 

efficacy in patients with early stage breast cancer, with improved patient survival shown to be 

correlated with complete eradication of invasive tumor in the primary breast lesion and lymph 

nodes (pathologic complete response, pCR) upon surgery following neoadjuvant chemotherapy. 

This has been demonstrated in multiple clinical trials, including National Surgical Adjuvant 

Breast and Bowel Project (NSABP) protocol B18, in which 1,523 women with early stage breast 

cancer were randomly assigned to preoperative versus postoperative anthracycline-based 

chemotherapy (2). There was no difference in disease-free survival (DFS) or overall survival 

(OS) at 5 years between treatment groups. However, in the 683 women that received neoadjuvant 

treatment, outcomes were significantly better in women who achieved pCR compared to those 

without pCR (5 year OS 87.2% vs. 76.9–78.4%, p = 0.06; DFS 83.6% vs. 60.3–71.7%, p = 

0.0004) after neoadjuvant therapy (3). Response to chemotherapy and pCR rates are known to 

vary by breast cancer subtype and chemotherapy regimen. This caveat notwithstanding, pCR has 

been shown to be a suitable surrogate endpoint for survival in patients with high-risk ER 

positive/HER2-negative (i.e., luminal B), HER2 positive (nonluminal), and triple-negative 

disease, though not for those with low-risk ER positive/HER2-negative (luminal A) breast cancer 

(4). Data also support that women who have a response to neoadjuvant chemotherapy but do not 

achieve a pCR have improved long-term outcomes when compared to those who do not respond, 
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by using response in the primary breast lesion as a surrogate for chemosensitivity. Mittendorf et 

al. described and validated a novel breast cancer staging system for assessing prognosis after 

neoadjuvant chemotherapy on the basis of pretreatment clinical stage (CS), post-treatment 

pathologic stage (PS), and estrogen receptor status and grade (EG), , known as the CPS+EG 

score (5). The ability of the CPS+EG score to stratify outcome was confirmed in both internal 

and external cohorts, with a score of < 2 corresponding with a 5-year disease-specific survival 

(DSS) ranging from 88% to 96%, while DSS was reduced with a score of > 3, ranging from 72–

88% (5).  

 

Neoadjuvant cytotoxic chemotherapy with an anthracycline plus taxane-based regimen, 

recommended as a preferred regimen by the National Comprehensive Cancer Network, results in 

a pCR in only a minor subset of patients (6). For example, in SWOG 0012, 185 patients with 

locally advanced breast cancer were treated with standard doxorubicin (Adriamycin) plus 

cyclophosphamide (AC) given every 21 days for 5 cycles, followed by weekly paclitaxel (T) for 

12 weeks (8). Overall pCR rate was 21%. However, in patients with hormone receptor (HR)-

negative tumors, the pCR rate was 29% compared to 11% in patients with HR-positive tumors. 

Tumor specific biomarkers for predicting response have been explored, including tumor-

infiltrating lymphocytes (TILs). TILs correlate with improved outcomes in several cancer types, 

including colorectal, ovarian, esophageal, renal, lung, pancreatic, and breast cancer (9, 10). 

Specific to early-stage breast cancer (of particular interest for this work), the presence of TILs in 

diagnostic needle core biopsy was shown to be an independent predictor of response to 

neoadjuvant chemotherapy (11), as was TIL density (12). Unfortunately, our clinical ability to a 

priori predict pCR to neoadjuvant therapy in breast cancer patients remains limited at best.  
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Therefore, in order to maximize the utility of the neoadjuvant therapy strategy in multiple breast 

cancer subtypes, there is a clinical unmet need for tools to identify patients that are likely to 

respond to neoadjuvant cytotoxic chemotherapy, thereby allowing a precision approach to cancer 

treatment.  

 

Over the years, our group has proposed that the characteristics of the tumor vasculature might be 

a biologic predictor of response to chemotherapy. This mechanistic hypothesis has been 

examined in a series of modeling studies to evaluate the prediction of treatment outcomes based 

on chemotherapy drug diffusion and the physical properties of several tumor types (13-29). We 

and other investigators have proposed that diffusion barriers may prevent drugs from reaching 

malignant tumor cells, a functional mechanism that might partially underlie drug resistance (30). 

Our mathematical model for predicting tumor response to chemotherapy (denoted by fkill, i.e., the 

fraction of tumor killed due to therapy) has been retrospectively validated in patients with 

colorectal cancer (CRC) with metastasis to the liver (13).  In metastatic CRC, the model 

predicted tumor response to chemotherapy using three drug perfusion- and diffusion-related 

parameters: blood volume fraction (BVF) in the tumor, the distribution of blood vessels (rb), and 

the drug diffusion distance in tumor tissue (L); such parameters were tumor- and patient-specific, 

and thus were measured on an individual basis.  

 

In this work, we have reasoned that the microanatomic cancer environment and functional 

attributes of the tumor-associated vasculature might be a biologic predictor of response to 

neoadjuvant chemotherapy in the setting of human breast cancer. We set out to test, validate, and 

expand our predictive mathematical model by rigorously applying it to three prospective cohorts 
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of human breast cancer patients through an integrated evaluation of histopathology and 

multiphase contrast-enhanced magnetic resonance imaging (MCE-MRI) data with a computer-

assisted semi-automated software to enable rapid yet robust throughput that may be adapted to 

routine clinical imaging settings.  
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Results 

 

Needle Core Biopsy Feasibility 

An overview of our research protocol is depicted (Figure 1). We sought to determine the 

feasibility of using diagnostic needle core biopsies to inform a mathematical model for 

prediction of fkill in women with infiltrating ductal adenocarcinoma of the breast receiving 

neoadjuvant anthracycline/taxane-based combination cytotoxic chemotherapy. As an initial step 

towards this goal, histopathological analysis to obtain model parameters was performed 

retrospectively on whole tumors from a cohort of breast cancer patients (n = 30, termed Cohort 

A) who underwent upfront either lumpectomy or mastectomy (primary surgery without prior 

systemic cytotoxic therapy). For Cohort A, we chose to evaluate the spectrum of breast cancer, 

including ER/PR positive, HER2 positive, and triple-negative breast cancer. There was no 

detectable differentiation between patient groups (hormone receptor-positive tumors, HER2-

positive, and triple-negative breast cancer) in Cohort A with regards to model parameters by an 

ANOVA test (Figure S1).  

 

Model parameters obtained from whole tumors in Cohort A patients were subsequently 

compared to a similar analysis of histopathologic samples from diagnostic needle core biopsies 

of a second cohort (n = 18, termed Cohort B) of high-risk Stage II and III HER2-negative breast 

cancer (i.e., triple-negative and high-risk ER positive/HER2) treated with neoadjuvant 

anthracycline/taxane-based chemotherapy (Figure 2). We found that Cohort A had a higher BVF 

than Cohort B, presumably due to the whole tumor section analysis in Cohort A relative to the 

limited core biopsy samples in Cohort B. Due to shape alone, the tissue section from a whole 
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tumor section results in a larger highly vascularized tissue region (perimeter of tumor) for Cohort 

A when compared to the cylindrical shape of a core biopsy for Cohort B. This analysis also 

indicated that vasculature characteristics must be measured on an individual basis in breast 

cancer. We then performed nonlinear regression by fitting the fkill model to one of the patient 

histological parameters (i.e., BVF) specific to the tumor vasculature of each patient to determine 

the best fit for L/rb for the entire dataset. We found that the patient samples for both cohorts fall 

along the same regression line (Figure 2); see fitting results in the inset. A correlation analysis 

between fkill [BVFbiopsy, (L/rb)biopsy] versus fkill [BVFbiopsy, (L/rb)fitting] for Cohort B resulted in r = 

0.7042. Hence, we have concluded that needle core biopsy samples may indeed be used to 

reliably determine histopathological parameters representative of the whole tissue.  

 

Separation between Clinical Outcomes by L/rb  

The CPS+EG score, used as a method to quantify response to neoadjuvant chemotherapy, ranges 

from 06, with a CPS+EG score < 2 corresponding to a 5-year DSS from 88% to 96% (5).  Our 

model was unable to discriminate between responders and non-responders in Cohort B by using 

a CPS+EG score of < 2 to define response. However, analysis of histopathology measurements, 

specifically L/rb, has provided a statistically significant separation of patients achieving a pCR 

from those that do not (p = 0.0269) (Figure 3). We note that the obtained accuracy cannot be 

fully ascertained due to the small sample size, but the feasibility of using the parameter L/rb to 

separate patients can be observed and further examined in future larger trials. We also note that 

all of the patients achieving a pCR in Cohort B had triple-negative breast cancer. A single patient 

was identified as a clear outlier, likely due to its dense population of TILs (not shown), an 



11 
 

independent predictor of response to neoadjuvant chemotherapy (11, 12). Similar dense TIL 

infiltrates were not identified in the other 17 patients in Cohort B.  

 

MCE-MRI Area under the Curve Association to Histology L/rb  

To evaluate model parameters via MRI, an area under the curve (AUC) map in the tumor region 

was used to estimate tumor blood perfusion from MCE-MRI data, as described by Pickles et al. 

(31). In order to obtain quantitative data from MCE-MRI, a region of interest (ROI) must first be 

defined; here, the hotspot of the tissue ROI (tumor or control tissue) was used to determine the 

maximum perfusion in that tissue region (see Figure S7 for visualization of hotspot). The 

hotspot region of the tumor was normalized to tissue in the equivalent anatomical location at the 

mirrored location on the contralateral breast (which represents a normal tissue region); this 

normalized value was used for analysis shown in Figure 4. Correlation between AUC as 

determined by MCE-MRI and L/rb as calculated by diagnostic needle core biopsy is shown in 

Figure 4. As described above, in Cohort B, L/rb demonstrates a positive correlation with pCR 

(i.e., the larger the L/rb value, the better the chance is to achieve a pCR; see Figure 3). Our 

current analysis is limited by small sample size but these pilot results that suggest a potential 

correlation between AUC and L/rb are encouraging. AUC may be assessed without core biopsy 

samples, a potential benefit given the limited specimen size obtained at the time of diagnostic 

biopsy and the increasingly common acquisition of pre-treatment breast MRI in women 

receiving neoadjuvant chemotherapy. We further compared model predictions from 

histopathology data only [i.e., fkill (histology)] with that from MRI data only [i.e., fkill (MRI)], and 

observed a weak correlation between these two predictions (Figure S5). To further determine 

whether there exists a statistically significant correlation between fkill (histology) and fkill (MRI), a 
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larger data set beyond the scope of this initial report will be required in future prospective 

studies.  
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Discussion 

 

We have demonstrated the feasibility of evaluating breast cancer vasculature in a patient-specific 

manner with a customized semi-automated analysis. The quantities: rb, BVF, and L are shown to 

be reliably predictive of tumor fkill when obtained from standard diagnostic needle core biopsy in 

stage II-III breast cancer patients, particularly in those with triple-negative breast cancer 

achieving a pCR. Application of this model for clinical use at the initial diagnostic stage may 

allow non-invasive prediction of outcome, whereby likelihood of pCR can be estimated early in 

the course of treatment, by using the flowchart depicted in Figure 5. The pilot framework 

introduced here represents the steps towards the design of a subsequent larger prospective trials 

with our mathematical model to potentially select neoadjuvant chemotherapy treatment based on 

predicted response, treating only those patients most likely to have a response with standard 

anthracycline/taxane-based chemotherapy, while referring those unlikely to respond to other 

standard of care options (e.g., radiation therapy) or even investigational clinical trials.  

 

Tumor vasculature is a chaotic labyrinth of malformed and destabilized blood vessels that are 

structurally and functionally impaired (32). Jain has argued that drug delivery to tumors could be 

enhanced through tumor blood vessel normalization and reduced interstitial fluid pressure 

induced by anti-angiogenic therapy (33). Along those lines of reasoning, a high L/rb value in 

patients achieving a pCR is likely indicative of a more “normalized” baseline tumor vasculature, 

perhaps explaining improved response to chemotherapy in this subset of patients. A higher L/rb 

value suggests that chemotherapy drugs may be more effectively delivered in these solid tumors, 

resulting in an improved kill fraction. Normal tissue has regularly spaced (or separated) blood 
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vessels which increases the value L, and thus an increased L/rb as well. Patient tumors with a 

high L/rb values tended to have “pooled blood,” or regions with highly vascularized tissue, 

severely limiting blood and drug delivery to poorly vascularized tumor regions. Model 

parameters correlated with pCR following neoadjuvant chemotherapy in women with triple-

negative breast cancers, but they did not correlate with a less than complete response (i.e., 

CPS+EG score ≤ 2) in triple-negative or high risk ER positive/HER2-negative breast cancers. 

We attribute this, in part, to our relatively small breast cancer patient population in the setting of 

a proof-of-concept study of a notoriously heterogeneous human tumor. Evaluation of our 

enabling mathematical platform in a larger breast cancer patient population might potentially 

allow the incorporation of other biologic features, including intensity of ER/PR expression, 

Ki67, grade, and presence of TILs, to aid in predicting response to chemotherapy, particularly in 

those patients destined to achieve less than a pCR.  

 

Several technical aspects of the methodology merit further discussion.  To begin, one of the 

limitations in our previous research in CRC (13) was that the histopathology parameters L and rb 

were solved for in the fkill model, while BVF was previously measured from hematoxylin and 

eosin-stained slides (13). Here, we have updated and refined this methodology by measuring 

these values (L, rb, and BVF) directly from tissue sections, utilizing vasculature-specific staining 

to enable better visualization, increasing the accuracy of analysis. Measurements were previously 

done manually, which is both cumbersome and prone to human operator error. In contrast, a 

computer-assisted software program was customized here to allow for increased accuracy and 

speed in measurements; the semi-automated analysis allowed for rapid throughput, and a total of 

3990 patient images were analyzed. Moreover, in this work we have correlated clinically 
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relevant treatment response assessments (pCR and CPS+EG score) with model parameters 

measured. Other limitations include differences in tumor vasculature staining via 

immunohistochemistry, although this source of bias has been greatly minimized through an 

automated staining protocol. Finally, while the chemotherapy regimen used was internally 

consistent, we have included all HER2-negative patients, resulting in a far more diverse patient 

population and thus increased heterogeneity in terms of response to neoadjuvant chemotherapy.  

 

While we present exploratory data regarding the use of breast MRI to obtain model parameters, 

additional optimization is needed in future work. The clinical MRIs evaluated in this study were 

acquired with routine clinical protocols, which are focused on optimizing workflow and clinical 

radiology reporting instead of quantitative assessment for precision medicine. However, based 

on the pilot MRI data presented, AUC estimated from MCE-MRI analysis provided encouraging 

information regarding patient response. In our evaluation, hotspot ROI AUC analysis had the 

best correlation to treatment outcomes, when compared to looking at the whole tumor with 3D 

spherical ROI and a tumor ROI. Thus, the highest perfused region seems to be the best predictor 

of treatment outcomes. There is a growing demand for and a body of evidence supporting 

development of precision imaging models. For the purposes of model parameter determination,  

MCE-MRIs should ideally contain a normalization method during acquisition to allow for a 

controlled method for T1 and B1 mapping (34). In order to obtain BVF from breast MRI, arterial 

input function might be evaluated at the time of scanning, with the ultimate inspirational goal of 

eliminating the need for needle core biopsy analysis for model prediction.  
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The semi-automated histology analysis described here can potentially be used for other solid 

tumors, although thresholding based on vascular staining and tumor types may need to be 

optimized for each. The general applicability of the mechanistic fkill model to predict response in 

several other cancer types has been examined and confirmed, including CRC with metastasis to 

liver, glioblastoma, pancreatic cancer, and lymphoma (13, 16, 18, 21). The observed consistency 

across tumor types is attributed to the fact that the fkill model was derived from fundamental 

principles of mass transport common to many solid tumor types (13), and evaluates vasculature 

characteristics in the tumor prior to treatment, thereby determining the efficiency of the vascular 

network to deliver drugs to the tumor. Our next steps will expand upon these results through 

inclusion of a large-scale dataset containing more MRI measurements with additional time 

points, along with additional tumor parameters to predict response.  

 

In summary, we report a mathematical modeling framework validated in patients with breast 

cancer from a single-institution study that will be reproduced and further investigated in a large 

multi-institutional setting. If successful, the hypothesis-generating results introduced here may 

enable the future development of minimally-invasive tools to accurately predict tumor response 

to neoadjuvant chemotherapy in human breast cancer patients.  
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Methods and Materials 

 

Patient Cohorts. Cohort A: The first step in evaluating our model in breast cancer was to 

analyze model parameters in primary resected breast tumors. We used primary resected tumors 

initially, as this provided ample tissue for histologic evaluation. In addition, we chose to evaluate 

a variety of breast cancer subtypes with regards to estrogen receptor, progesterone receptor and 

HER2 expression, as it was unknown if model parameters would vary by biomarker status. Thus, 

in Cohort A, we retrospectively determined the parameters , BVF, and  from primary 

resected breast tumors, reviewing hormone (estrogen and progesterone) receptor-positive tumors 

(n = 10), HER2-positive tumors (n = 10), and tumors negative for both hormone receptors and 

HER2 (triple-negative, n = 10) utilizing de-identified archival paraffin-embedded tissue.  

 

Cohort B: After determination of model parameters in Cohort A, the model was applied to 

women who received neoadjuvant chemotherapy (Cohort B). Cohort B (n = 18), as summarized 

in Table 1, consisted of women with HER2-negative high-risk stage II-III infiltrating ductal 

carcinoma of the breast receiving neoadjuvant chemotherapy with a modern anthracycline / 

taxane-based regimen. High-risk was based on stage and the opinion of the treating provider (and 

Tumor Board) that neoadjuvant chemotherapy was warranted.  As model parameters did not vary 

by biomarker status in Cohort A, in Cohort B we focused on exclusively HER-2 negative 

patients to increase homogeneity with regards to chemotherapy regimen. In Cohort B, paraffin-

embedded baseline diagnostic needle core biopsy of primary breast tumor pre-chemotherapy was 

used to determine model parameters , BVF, and  via semi-automated histopathology 

analysis as discussed below. In Cohort A, we used whole tumor for analysis, and found model 

rb L

rb L
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parameters consistent across the tumor section despite tumor heterogeneity (as described below, 

identifying tumor, stroma, and vasculature). Thus, we felt confident moving to needle core 

biopsy alone for analysis in Cohort B. In addition, in Cohort B pre- and post-chemotherapy MRI, 

performed per standard-of-care, were used to obtain model parameters via an alternative 

imaging-based method (detailed below). Following neoadjuvant chemotherapy, all patients 

underwent surgical resection, allowing assessment of pathologic response and calculation of 

CPS+EG score.  

 

Patient Outcome Evaluation. Patient treatment response was determined after completing 

neoadjuvant chemotherapy. Resected specimens were analyzed for pCR (yes/no). In addition, 

patient treatment response was assessed by using the CPS+EG score (5). Calculation of CPS+EG 

score was performed by the study team based on presenting clinical stage (obtained from pre-

treatment clinical notes), histologic grade and estrogen receptor status (determined by routine 

pathology review of pre-treatment diagnostic biopsy), and post-neoadjuvant chemotherapy 

pathologic stage (determined by routine pathology review of post-treatment resection specimen) 

as described in (5).  Patient response was defined and analyzed by (i) pathologic complete 

response (pCR): no evidence of viable residual tumor in the primary resected breast specimen 

following the completion of neoadjuvant chemotherapy, and (ii) CPS+EG score < 2.  

 

Magnetic Resonance Imaging. Patients had pre-treatment and post-treatment gadolinium MCE 

MRI scans on a 3T MRI (Siemens, Magnetom Tim Trio), which served as an imaging method to 

determine tumor and breast tissue perfusion. MRIs were obtained as part of routine clinical care 

prior to the administration of neoadjuvant chemotherapy (pre-treatment) and after all planned 
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neoadjuvant chemotherapy was administers prior to surgery (post-treatment). Baseline axial 3D 

gradient echo-based (FLASH) T1 scans were acquired without contrast using a dedicated 7 

channel, receive-only breast coil with fat saturation and with the following parameters: 12-

degree flip angle, 3.88/1.54 msec TR/TE, .9 mm slice thickness, 488 × 358 FE/PE matrix. Post 

contrast images were acquired with the same parameters as baseline images with Magnevist (0.2 

ml/kg, 2 ml/sec) administered intravenously, with image acquisition at 1.5 minutes, 3.5 minutes, 

and 5.5 minutes post injection. Three subtraction images were created (post-pre) and used for 

MRI analysis. Patients with MRIs not conforming to these criteria were excluded from the MRI 

analysis. Analysis of MRI data was performed with OsiriX Dynamic Contrast-Enhanced (DCE) 

Tool Plugin (35). Area under the curve was measured by using a 3D spherical ROI over the 

tumor region determined by an index radiologist attending, and the hotspot (maximum signal in a 

1 cm3 region given the original ROI) was measured for the tumor. For normalization, a control 

ROI was assessed on the contralateral breast in the same general anatomical position as the 

tumor, considered a baseline for the individual normal tissue vasculature in each patient. Figure 

S7 depicts representative MRI images along with the analyses performed.  

 

Histopathology. Patient tissue samples were formalin-fixed and paraffin embedded, and 

processed per institutional standard of care, in compliance with the American Society of Clinical 

Oncology/College of American Pathology (ASCO-CAP) guidelines. The Human Tissue 

Repository and Tissue Analysis Shared Resource at the University of New Mexico 

Comprehensive Cancer Center (UNMCCC) served as an honest broker for access to all tumor 

specimens. CD34 antibody staining via immunohistochemistry was used to highlight tumor 
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vasculature, and H&E staining was performed to evaluate tissue morphology (e.g. tumor versus 

non-tumor).  

 

Histopathology Semi-automated Analysis. Representative single sections of primary resected 

tumor for patient Cohort A, and representative single sections from needle core biopsy samples 

from patient Cohort B were analyzed by using HALO image analysis software (Indica Labs) to 

separate tissue regions in the CD34 stained tissue sections into CD34-positive tissue regions 

(vasculature), CD34-negative tissue regions (non-vasculature tissue), and background regions 

(non-tissue). HALO uses machine-learning to classify tissue regions based on a training set. 

Tissue regions were separated into 1 × 1 mm2 square regions for analysis using code developed 

in Matlab (MathWorks). This code takes the HALO-separated regions and measures vasculature 

radius, rb (µm), measured along the short axis of the blood vessel due to the consideration that 

the blood vessel could be in the plane of the tissue section, thus ensuring we do not overestimate 

this parameter (Figure 6). Multiple measurements were taken for each blood vessel and averaged 

to obtain a single rb value for each grid analyzed. To ensure the accuracy of the semi-automated 

methods developed, each measurement was checked multiple times over multiple iterations of 

the software analysis. The blood volume fraction, BVF, was taken to be the vasculature area (in 

red) divided by the whole tissue region (Figure 6C, blue + red). Only tissue regions were 

considered for BVF measurement. Vessels were assumed to supply drug and nutrients to all 

surrounding tissue that was nearest to that vessel, these perimeters define the maximum diffusion 

length L, and are shown in black (Figure 6D). The distances between this boundary (black) and 

the nearest blood vessel (in red) were measured and averaged for each grid analyzed to get the 

diffusion penetration distance L (µm). We note here that larger blood vessels (which are 
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presumably expected to deliver greater amounts of drug) increase the rb value, thus decreasing 

L/rb. This is balanced by L, which may have a longer penetration distance due to the increased 

vascular supply. In other words, it is the ratio of these two quantities that must be considered 

together instead of individually when evaluating treatment efficacy.  

 

 

Mathematical Model.  
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f     [1] 

The fkill equation with parameters rb, BVF, and L, which are directly measured from histology 

semi-automated analysis. fkill is the fraction of tumor cells killed, . rb is the average radius of 

blood vessels in the tissue section analyzed, BVF is the fraction of blood volume in the tumor, 

and L is the farthest distance nutrients/drug need to travel from a blood vessel to reach all tissue 

(13).  

 

 

Statistics. Matlab and GraphPad Prism 7 were used to determine best fits of patient averages for 

BVF, rb and L placed into Eq. 1 and by using non-linear regression solving for L/rb. Fits were 

obtained with initial values for fit, L/rb = 20 and L/rb > 0.005 for a constraint. For data in Figure 

3, a two-tailed Student’s t-test was used to compare histopathology measurements (L/rb) from the 

two groups (pCR and no pCR). p < 0.05 was considered statistically significant.  

 

Study approval. For all components of this research, approvals were obtained from the IRB of 

the University of New Mexico Health Sciences Center, study ID numbers 14-070 and 15-017. 
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Studies were conducted according to the principles set out in the Declaration of Helsinki. Written 

informed consent was obtained from all prospective study patients.  
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Figures and Figure Legends 

 

Figure 1.  

 

Figure 1. Research protocol.  
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Figure 2.  

 

Figure 2. Model Analysis.  fkill values are shown as determined as 1) calculated from measured 

values (points; Cohort A: measured from resected whole-tumor histology, Cohort B: measured 

from needle biopsy) and 2) model best-fit (Eq. 1) line to the full data set (black line). Cohort A: 

30 retrospective patients underwent primary surgery without prior systemic therapy analyzed by 

using histology semi-automated analysis and the mathematical model. Cohort B: 18 patients 

receiving neoadjuvant chemotherapy are shown to distinguish patients with pathologic complete 

response (pCR) vs. those without a pCR. Each point is fkill calculated for an individual patient by 

using averages of BVF, rb, and L measured directly from tumor tissue stained with CD34 by 

immunohistochemistry. The black line shows fkill calculated from Eq. 1 with optimized parameter 

L/rb = 13.6981 (determined from fitting, R2 = 0.79875). The fkill regression line includes fitting of 

both Cohort A and Cohort B patients (n = 48). Error bars are calculated based on error in BVF 

measurements and the respective variation that it causes when incorporated into the fkill equation 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
BVF

0

0.2

0.4

0.6

0.8

1

L/r
b
 = 13.6981

R2 = 0.79875
p < 0.001

Cohort A- (n=30)
Cohort B- pCR (n=5)
Cohort B- no pCR (n=13)
f
kill

 regression



30 
 

(Eq. 1). Correlation analysis of measured fkill and computed fkill for all 48 patients is shown in 

Figure S2.  
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Figure 3.  

 

Figure 3. Histopathological parameters separate patient groups (pCR and no pCR). (left) 

Patient groups can be separated by a L/rb value within the range of 18.46 (the highest value in the 

“no pCR” group) and 22.73 (the 2nd lowest value in the pCR group); see the gray zone. The 

patient from the pCR group that has the lowest L/rb value may be an outlier; see main text for 

details. (right) A Student’s t-test determined a statistically significant difference between these 

two groups with respect to L/rb (p < 0.05).  
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Figure 4.  

 

Figure 4. Response to neoadjuvant chemotherapy and MCE-MRI in Cohort B.  CD34 

stained core biopsy samples measured for L/rb (radius of blood vessel: rb, tissue diffusion 

penetration distance: L) and its relation to MCE-MRI area under the curve (AUC) analysis, time 

points 0–5.5 minutes, taken for the hotspot region of the tumor normalized to the measured 

healthy tissue at the mirrored anatomical location on the contralateral breast.  
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Figure 5.  

 

Figure 5. Prediction of treatment outcome using both MRI and tumor histology from 

diagnostic biopsies.  
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Figure 6.  

 

Figure 6. Diffusion analysis workflow.  A) Shows the original CD34-stained histology grid 

before any processing. B) Displays the same tissue region as in A, but with the outer inked 

portion removed due to the increased likelihood of false positives on the perimeter of core biopsy 

samples (the pathology department inks tissue cores for quality purposes). C) Shows a 

computerized version of B with differentiation between tissue CD34- (blue), vasculature CD34+ 

(red), and non-tissue regions (grey). D) Shows the diffusion analysis of image C, which was 

performed by code developed in Matlab. Parameters measured are: blood vessel radius (rb), 

blood volume fraction (BVF), and diffusion distance (L). Blood vessels are outlined in red, and 

the total area of blood vessels in a tissue region is the blood volume fraction, BVF. The blue 

shows the central long axis of each vessel (multiple vessel radius measurements were taken 
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perpendicular to this axis). An average of all vessel radii in each image analyzed is taken to be rb 

(µm). The black lines discretize the image into regions defined by having the closet proximity to 

the enclosed vessel; then the distance from each black boundary to the blood vessel boundary 

(red) is measured, and all distances averaged is the diffusion penetration distance, L, measured in 

µm. White is the tumor tissue region, all of which is considered for analysis. Green is the 

background/non-tissue region not considered for analysis.  
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