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We discuss here recent developments of note in the synthesis of self-assembled 
surfactant-mesophase templated films using a sol-gel route.  First, the formation of metal 
oxide (non-silica) films using this method has become a highly active area of research, 
with careful studies unlocking the key processing parameters needed to successfully 
synthesize these materials.  Also, the control of pore orientation in these self-assembled 
materials using confinement or surface modification has also become extremely 
important.  Finally, we identify research directions we believe will yield important new 
advances in this area of materials science/chemistry.

 2



Introduction 
 
 Mesoporous and mesostructured materials formed by the organization of 
inorganic precursors around a surfactant mesophase template [1••,2,3] are a prominent 
example of “bottom-up” fabrication where self-assembly is employed to precisely 
position hydrophobic and hydrophilic precursors into often elaborate nanoscale 
architectures.  Although research into these materials has been largely focused on 
powdered materials synthesized using a hydrothermal route, especially for use in 
catalysis [4••], interest in thin films of these materials for applications such as active 
control of mass transport [5••], low k dielectrics [6•], or laser devices [7••,8] has grown 
considerably in recent years.  Initially, thin mesostructured films were deposited using 
heterogeneous nucleation under hydrothermal conditions or at the liquid-vapor interface 
[9]; however, evaporation-induced self assembly (EISA) has proven to be more versatile 
[1••,3,10].  In EISA, a homogeneous solution of a soluble oxide precursor and surfactant 
(or block copolymer), prepared in a mixed alcohol/water solvent system with an initial 
surfactant concentration less than that where bulk mesophases appear, undergoes 
preferential evaporation of alcohol during film deposition, thus concentrating the 
depositing film in water, surfactant and inorganic species.  The progressively increasing 
surfactant concentration drives the organization of the surfactant into lyotropic liquid 
crystalline mesophases; common network morphologies include lamellar, 2D or 3D 
hexagonal, cubic (both bicontinuous and micellular phases) [3], as well as modifications 
of these structures [11•].  Subsequent inorganic condensation freezes in the final 
nanoscale morphology [1••]; the surfactant template can then be removed by solvent 
washing, calcination, or UV exposure [12••,13•] to obtain a mesoporous (as opposed to 
mesostructured) film.  Significantly, the EISA process has also been extended to the 
formation of well-ordered and robust gold nanocrystal/silica composite arrays [14••]. 
 Importantly, EISA is not limited to the construction of purely inorganic structures; 
through the controlled partitioning of organic components within the domain bounded by 
the hydrophobic interior of the surfactant mesophase and the polar environment of the 
inorganic walls, hybrid organic-inorganic composites can be synthesized with the organic 
component localized inside the surfactant phase, at the interface between the surfactant 
and inorganic phases (i.e. at the pore wall), or inside the inorganic walls of the resulting 
material [5••,15••].  Inclusion of one or more linker groups (for example, alkoxysilanes) 
on the organic component covalently melds the two materials into a microscopically-
homogeneous hybrid. Synthesis of functional mesoporous hybrid films has been a fertile 
area of research; the reader is referred to a recent review for an extensive overview of this 
field [16••]. 
 Although a significant body of work has been generated relating to the functional 
characterization and application of self-assembled structures formed via EISA [5••,15••], 
important issues remain with respect to the control of film morphology that will 
ultimately limit the practical application of these materials.  For example, control of the 
interconnectivity between pores in films with 3D mesostructures is critical for the proper 
regulation of mass transport through the films or stability of low-dielectric materials 
[6•,17••]; the specific geometry of these pores could have implications in the arrangement 
of organic modifiers.    
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 Two structurally-significant issues that have been addressed of late are synthesis 
of films using metal oxides other than silica, and the control of pore orientation and 
morphology using confinement and chemical modification of the substrate.  Here we 
concentrate on recent developments in these areas, followed by a brief discussion of 
future prospects in the morphological control of these materials. 
 
Nanostructured and nanoporous metal oxide films 
 
 Because of material characteristics such as high refractive index [7••,18•] and 
semiconductivity [19••,20•], surfactant-templated nanoporous or nanostructured films of 
materials other than silica have been of increasing interest to the research community.  
Relative to materials of pure silica, however, control of nanoscale morphology is 
generally more difficult; increased metal oxide precursor reactivity hinders control of 
hydrolysis reaction kinetics, while a diminished tendency to form extended amorphous 
networks yields films with poor structural integrity, leading to pore collapse upon 
removal of surfactant and/or subsequent crystallization.  Typical synthesis conditions for 
these materials use a highly acidic sol to retard condensation during self-assembly.  
Following coating, careful atmospheric and thermal treatments are used to promote 
network condensation while attempting to maintain structural order [21••].   
 In the synthesis of nanostructured SiO2 and metal oxide films using the EISA 
process, barring non-equilibrium conditions [22] the final morphology is determined by 
the volume ratio of surfactant template to the inorganic phase after solvent evaporation 
[23]; this volume ratio must include water present in the film established by equilibration 
with atmospheric humidity, and adjustable via atmospheric control after coating during 
the so-called modulable steady state (MSS) [1••].  For silica, facile extended network 
condensation rapidly “freezes” in the final film morphology.  In metal oxide films other 
than silica, however, suppressed network condensation greatly extends the MSS; indeed, 
it now appears that the critical step in obtaining well-ordered metal oxide films is aging 
the as-deposited film in a humidity- and temperature-controlled environment 
[21••,24,25••].  Crepaldi et al. examined the mechanism of film formation of 
mesostructured TiO2, and found that the disorder-to-order transition (and thus the quality 
of the final mesostructure) that occurred after film formation was more sensitive to 
equilibrium with atmospheric humidity than to the original amount of water added in the 
precursor sol [21••]. This same group also reported the synthesis of mixed yttria-zirconia 
and ceria-zirconia films with either a 2D hexagonal or 3D cubic morphology [24], again 
finding that the quality (and even identity) of the final mesostructure was controlled by 
humidity. More recently, Urade and Hillhouse synthesized nanoporous films of SnO2 
with a 3D orthorhombic structure (Figure 1)[25••].  As deposited, these films did not 
exhibit any long-range ordering as indicated by the absence of peaks in the x-ray 
diffraction pattern. However, aging in a controlled humidity environment (here at 
elevated temperatures), even after complete film drying, initiated the transition to the 
ordered morphology.  It was pointed out that self-assembly of this system is not by an 
EISA process as structure appears only after subsequent processing following film 
deposition and not as a consequence of solvent evaporation during or after dip-coating.  
Overall, whatever the mechanistic details, understanding the importance of post-
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deposition processing should allow the fabrication of other, difficult to synthesize but 
technologically important, nanostructured or nanoporous thin-film materials. 
 Other groups continue to develop new strategies to produce materials with 
difficult-to-synthesize compositions.  One notable approach is the use of new block co-
polymers [26•, 27•, 28•] to template films from materials such as titania [26•,27•], ceria, 
zirconia, and mixed ceria-zirconia materials [28•].  Relative to other block co-polymers 
such as the Pluronic family of surfactants, these polymers exhibit higher hydrophobic 
contrast, increasing the “robustness” of the self-assembly process, and are significantly 
more thermally stable, maintaining mesoscale ordering during the onset of wall 
crystallization during heat treatment.  Also, large pore size (ca. 10-15 nm) and wall 
thickness stabilizes the mesostructure towards wall crystallization, inhibiting material 
collapse.   
 Stucky et al. have been exploring the use of high refractive index dye-doped metal 
oxide films for solid-state laser fabrication.  Materials formed using standard alkoxide 
routes are unsuitable as the thermal processing needed to form stable inorganic networks 
is not compatible with fragile organic laser dyes.  Also, the mechanical and optical 
properties of thick films (ca. greater than 1 µm) synthesized using alkoxide precursors are 
generally unsatisfactory for the construction of optical devices.  To improve these 
characteristics, trifluoroacetic acid (TFA) has been utilized to modify the titania network 
in hybrid mesostructured waveguide layers [7••,18•]; the effective refractive index of 
these materials is high enough to demonstrate amplified spontaneous emission even on 
glass substrates (previous demonstrations of this effect utilized silica-based hybrid lasing 
layers deposited onto low-index porous buffer layers [8]). 
 
Effect of confinement on material morphology 
 
 As is evident from the orientation of the thin film mesophases with respect to the 
bounding solid and vapor interfaces, the presence of these interfaces influences 
mesophase development.  They serve as nucleating surfaces from which incipient 
mesophases grow toward the film interior [29]. A fundamental question is how 
nucleation and orientation can be controlled via chemical modification of these interfaces 
and/or dimensional confinement of the self-assembly process.  The simplest case of 
mesophase alignment has been achieved by topological substrate modification (for 
example, using a “rubbed” polymer film [30], or more recently, a photo-alignable 
polymer layer to pattern the in-plane orientation of a mesostructured film grown using 
heterogeneous nucleation [31]) as well as electro-osmotic flow through a microfluidic 
mold [32].  These strategies induce in-plane alignment of 2D hexagonal mesophases over 
macroscopic length scales, in contrast to pore orientation parallel to the substrate but 
without any in-plane alignment (producing “fingerprint” patterns when imaged with 
electron microscopy in a plan-view [23]).  However, alignment of the same 
nanostructures in a direction perpendicular to the substrate, a significantly more 
interesting architecture from an applications perspective, has proven to be more difficult.   
 Recent research has demonstrated such alignment can be induced by using 
confinement of the self-assembly process in 1D channels and/or chemical modification of 
the substrate.  For example, by using a porous alumina membrane with transverse one-
dimensional channels as a host in which to confine the self-assembly process, 2D 
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hexagonal mesophases have been aligned perpendicular to the plane of the membrane 
surface [33•,34•].  While the effect of confinement in anodic alumina membranes on the 
alignment of surfactant/silica self-assembly was first noted in 2003 [35], true 1D 
alignment was not reported until the following year in two nearly-simultaneous papers. 
Yamaguchi et al. utilized cetyltrimethylammonium bromide to fabricate an aligned 
surfactant/silica composite inside the pores of an alumina membrane, as seen in the TEM 
micrographs of Figure 2 [34•]. Although solution-phase permeation measurements 
demonstrated that the presence of the composite nanostructure introduced size selectivity 
to mass transport through the membrane, lack of a suitable (non-nanostructured silica) 
control experiment prevents any definitive conclusions about structure/property 
relationships in this system.  Lu et al. also reported the 1D alignment of a silica 
mesophase inside an alumina membrane, but used Pluronic P123 as the surfactant 
template (giving pores of ca. 6 nm in diameter) and created a true porous material by 
pyrolysis of the surfactant template [33•]. 
 In these examples of pore alignment inside a 1D template, the channel diameter of 
the anodic membrane (about 200 nm) is much greater than the repeat spacing of the self-
assembled structure (ca. 3-10 nm).  As the size of the confining space approaches that of 
the surfactant micelle, however, a variety of new nanostructure morphologies appear 
[36,37••], as can be seen in Figure 3.  In a study where Pluronic P123/silica mesophases 
were self-assembled inside anodic alumina membranes with pore diameters 
systematically varied between < 20 nm to 80 nm, a variety of architectures ranging from 
systems of coiled channels to discrete cage-like structures were observed as the 
membrane pore size was decreased [37••].  The coiled channels were found in either a 
“stacked doughnut” arrangement, or as single- or double-helixes that exhibited chirality.  
The use of these confined mesostructures as templates for the electrochemical deposition 
of several materials (Ag, Ni, Cu2O) was demonstrated [38•]. 
 An alternate strategy for the perpendicular alignment of mesopores is based upon 
simulations of block copolymer and surfactant self-assembly at/between functionalized 
surfaces that have been chemically modified to equalize the interaction strength between 
the surface and each block or component of the polymer or surfactant; the equal 
interaction of both hydrophilic and hydrophobic components of a cylindrical mesophase 
with the underlying surface induces an orthogonal alignment of both lamellar and 
hexagonally close-packed mesophases [39].  These results have been confirmed 
experimentally in systems of large block copolymers, but only recently with surfactant-
templated silica.  Koganti and Rankin aged 2D hexagonal films (templated with Pluronic 
P123) between glass slides modified with cross-linked P123 or a random ethylene 
oxide/propylene oxide copolymer [40•]; although x-ray diffraction and TEM data were 
consistent with a final structure of orthogonally-oriented pores, confirmation of this 
structure will require investigations with techniques such as grazing incidence x-ray 
diffraction (GISAXS) that can detect out-of-plane ordering in thin film systems [1••,11•]. 
  
 
Future Perspectives 
 
 A critical direction for research into the morphological control of self-assembled 
inorganic thin films is that of integration into functional structures at both nano- and 
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macroscopic length scales.  For the former, the ability of the EISA process to direct the 
structural distribution of active organic components in the final self-assembled material 
has opened up potential applications such as hybrid inorganic/organic solar cell materials 
or active molecular valves [5••].  Furthermore, after template removal the ordered pore 
network of the inorganic material can serve as a precisely-defined nanostructured host for 
the organization of other materials such as metal wires [38•] or semiconducting organic 
polymers [41]. To properly establish structure/property relationships in these materials, 
however, it is important to better understand the nanoscale morphology. GISAXS and 
SAXS studies have proven to be invaluable in this regard; the use of software to model 
the observed spot patterns has increased the sophistication of mesophase identification 
[11•,42].  However, these studies only yield the symmetry of the resulting architecture, 
and not the precise 3D morphology of the mesostructure.  Such data has been obtained 
for powdered materials using TEM studies [43]; future developments in characterization 
techniques will hopefully allow the same for thin-film materials, although films are often 
problematic in that drying and calcination normally result in 1D shrinkage normal to the 
substrate, lowering the symmetry of the film (e.g. cubic to tetragonal or orthorhombic 
structures [11•]).  
 Less attention has been given recently to the physical and chemical-property 
patterning of self-assembled oxide mesophases into macroscale constructs; by analogy to 
biological systems, structure and function must be defined over many length scales, and 
with lower symmetry than is typical of materials formed through a self-assembly process 
(this property being critical for technologically-important function such as ion pumping 
or charge separation). Macroscopic patterning of these materials has been demonstrated 
previously using micromolding [8], differential wetting, ink jet printing, dip pen 
lithography [44], and even light [45].  Although the state-of-the-art in non-traditional 
patterning continues to evolve [46••], the last few years have seen few significant 
developments in patterning of thin-film inorganic mesophases.  In one approach, low-
temperature UV-induced surfactant removal through a combination of direct (deep) UV 
exposure and concurrent ozone/activated oxygen production [12••,13•] through a mask 
enables spatially defined surfactant removal; differential solubility of exposed and 
unexposed regions in NaOH allows for easy removal of unwanted material.  Also, film 
deposition into a resist layer patterned by electron-beam lithography followed by 
mechanical polishing and calcination was utilized to create arrays of mesoporous SiO2 
and TiO2 with dimensions between 250 nm to 50 µm [47•]. 
 The combination of self-assembly with concurrent (energy dissipating) directed-
assembly is a potentially powerful route to organization of mesostructured or mesoporous 
thin film materials on more than one level.  For example, external fields have been 
investigated as a means of obtaining films with mesophases oriented orthogonally to the 
substrate [48,49]; this strategy has proven to be difficult, however, presumably a result of 
the relative rate of silica condensation being greater than that of mesophase alignment.  
For example, a recent report where an electric field was applied across a film as it dried 
yielded an irregular elliptical pore structure, with no evidence of mesophase alignment 
parallel to the electric field [48].  In another report, application of a magnetic field was 
more successful, although full alignment was not achieved; 2D hexagonal domains were 
found with angles relative to the surface normal of 45-60° in addition to true 
perpendicular alignment [49].  Future attempts at mesophase alignment using external 
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fields may benefit from non-silica systems such as TiO2 or ZrO2, where reduced 
condensation kinetics should enable alignment of the mesophase.  Finally, physical 
gradients in pH, temperature, or convection may yield useful routes to simultaneous 
organization of self-assembled morphology at multiple length scales; this strategy has 
been demonstrated previously by the patterned deposition of nanoscopically-structured 
materials such as zeolite nanocrystals using Bénard-Marangoni convection [50•]. 
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Figure Captions 
 
Figure 1.  Small angle x-ray scattering (SAXS) data of tin oxide films templated with 
Pluronic P123 after a post-deposition humidity treatment at 70° C (panel A), a 
subsequent thermal treatment at 250° C to lock-in the film structure (panel B), and finally 
after removal of the template using a calcination at 600° C (panel C), showing high 
stability for the film structure.  The overlaid spot patterns were calculated assuming a 
face-centered orthorhombic phase (space group Fmmm); panel d illustrates the observed 
shrinkage obtained at each processing step.  Reproduced with permission from reference 
25.  Copyright 2005 American Chemical Society. 
 
Figure 2. A) A high-magnification view of the top surface of a 2D hexagonal 
silica/surfactant composite self-assembled inside an anodically-etched alumina 
membrane, and B) the same structure as seen from the side, showing the alignment of the 
mesophase with the direction of the alumina pore.  Scale bars are 50 nm in each panel.  
Reproduced by permission of Nature Publishing Group from reference 34. 
 
Figure 3.  A) Silica nanofibers formed via Pluronic P123-templated assembly within 
anodic alumina membrane channels of average diameter = 60 nm, after release by 
selective etching of the alumina membrane using phosphoric acid.  The scale bar in the 
lower right corner is 100 nm.  B) Schematic illustrations of the types of mesoscale 
morphologies observed from confinement of the self-assembly process in channels of ca. 
55-73 nm diameter: stacked donuts (left), double helix, and single helix (right).  C) 
Simulated structures calculated using self-consistent field theory for alumina pore 
diameters of nearly 50 nm (right) and 65 nm (left), showing some discrepancy in the 
prediction of mesophase morphology. Panels A and B reproduced with permission from 
reference 38.  Copyright 2004 American Chemical Society. Panel C reproduced by 
permission of Nature Publishing Group from reference 37. 
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