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Oriented inorganic films
C Jeffrey Brinker

Since 1996 there have been over 500 literature citations for
oriented inorganic films, although a majority of these papers
are concerned with vapor phase processing routes such
as chemical vapor deposition. Within the context of colloid
and interface science there has been continued, incremental
progress in so-called 'sol-gel' or 'solution chemical'
process ing of epitaxial ferroelectric and piezoelectric films for
a variety of electronic and optical appl ications. A promising
new approach that obviates the requirement of a single
crystal substrate involves heterogenous nucleation and growth
on preorganized organic and organically' modified surfaces.
Such biomimetic schemes have also been used to form highly
oriented porous films for use ln separations, sensors, and
catalysis. New hydrothermal routes have been devised to
prepare oriented zeolite films as well as ferroelectric films. It
is anticipated that the combination of self-assembly processes
with innovative patterning strategies should lead to future
advances in this field.
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Abbreviations
MMS mesoporousmolecular sieves
OIF oriented inorganic films
PZT lead zirconate titanate

Introduction
Oriented inorganic films can range from polycrystalline,
microporous zeolitic membranes for use in molecular
separations to dense, single crystal, lead zirconate titanate
(PZT) films designed for optical data storage. Film
orientation is often intended to exploit asymmetry in
crystalline or composite structures, thereby enhancing
transport, mechanical, magnetic, optical, or electronic
properties.

This review discusses the recent progress in the syn
thesis and processing of oriented inorganic films (OIF),
emphasizing recently published papers. I have defined
'oriented' to include any structure which exhibits a specific
direction with respect to a substrate or surface. Epitaxial
films, which show precise crystallographic orientation with
respect to the substrate, are a subset of oriented films.
For completeness, the review covers films (defined as
continuous supported or free-standing layers) as well as de
posits (consisting of supported, discontinuous assemblages
of oriented structures). The scope of this review, however,

is limited to oriented films prepared from molecular or
colloidal precursors in liquid media , excluding the myriad
of vapor phase routes to OIF such as chemical vapor
deposition and molecul ar beam epitaxy.

The preponderance of research on OIF falls with in three
categories: dense, optimally epiraxial. , ceramic films for
electronic and optical applications; oriented microporous
or mesoporous films for applications in molecular separa
tion, sensing, and catalysis; and multilayered films for me
chanical/tribological, sensing; and electronic applications.
Two general synthetic approaches have been utilized to
form these OIFs: those involving molecular or oligomeric
precursors and those utilizing colloidal sols (sequential
deposition schemes combine these two approaches). Much
of the recent research on OIF has benefited from
adaptation 'of biomineralization principles, namely the use
of organized organic interfaces to regulate nucleation,
growth, morphology, and orientation of inorganic crystals
[1-3,4°,5°].

Epitaxial ceramic films
Epitaxial ceramic films are important for ferroelectric
and opto-electronic devices, where one can optimize the
anisotropic properties of pcrovskite materi als such as
I3aTiOJ and PZ1: Chemical solution routes to formation of
epitaxial or highly oriented ceramic films are well known
(sec for example [6-9]) and reviews of this topic were
recently published by Lange [10°] and Schwartz [11°].
Most commonly, a homogeneous sol, prepared from
metal alkoxide, carboxylate, or 13-diketonate precursors,
is used to deposit a continuous, amorphous film of the
requisite stoichiometry onto a single crystal substrate. A
low temperature heat treatment is used to decompose
or pyrolyze the precursors, often inducing spontaneous
nucleation of a polycryst alline film at the substrate
surface. Epitaxy then occurs at higher temperatures by
the conversion of this polycrystalline film into a single
crystal. When the film and substrate have identical
structures (despite different chemistries) and small lattice
mismatches (5% or less), this conversion occurs simply by
the growth of epitaxial grains located at the film/substrate
interface [10°]. With regard to chemical considerations,
it is well established that the choice of precursors and
their extent of reaction prior to deposition ultim ately
govern solution homogeneity, pyrolysis temperature, onset
of crystallization and densific ation behavior [11·]. The
relationship, however, between this precursor chemistry
and the .epitaxy that takes place is less well defined
because of the high temperatures (>700·C) required to
grow the epitaxial grains to reach the surface. A consistent
finding [11°] is that prereaction of the precursors, for
example by hydrolysis, to form oxo oligornersor polymers
diminishes film orientation [6,12]. It is argued that oxo



species serve to preferentially nucleate randomly oriented
crystals within the film, and that these sites compete with
nucleation sites at the film/substrate interface, leading
to growth of randomly oriented grains [6]. Prehydrolysis,
however, also promotes low temperature nucleation,
impeding densification, and thus may contribute to
frustration of the epitaxial conversion process [10-].

Hydrothermal techniques are commonly used to prepare
zeolitic films and membranes (discussed below), but it
is only recently that they have been explored as a
low temperature route to production of epitaxial ceramic
films [13,14-]. Using anatase TiOz, Pb(N03}z, and ZrOCl
as precursors under alkaline aqueous conditions where
Pb(ZrxTi1_x)03 is the thermodynamically favored phase,
Chien et al. [14-] demonstrated epitaxial growth of PZT
on (001) SrTi03 and LaAl03 single crystal substrates at
9G-150·C. X-ray diffraction of films on SrTi03 showed
alignment of (hOD) and (OO/) planes of PZT with (OO/)
planes of SrTi03. Epitaxial growth initiates by formation
of {100} faceted islands. Growth and coalescence of the
islands can lead to smooth, continuous films with only
occasional porosity. This appears to be a promising new
approach to making epitaxial ceramic films. Electronic
applications, however, may be limited because of the likely
incorporation of hydroxyl groups during the hydrothermal
process.

Ceramic films prepared on organic surfaces
Another recently discovered route to the production
of oriented ceramic films is the deposition onto func
tionalized organic surfaces [15,16,17--]. This approach
mimics biomineralization, where preorganized organic
surfaces serve to template the heterogeneous nucleation
and growth of oriented inorganic crystals in aqueous
media. Studies of biomineralization and adaptation of
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biomineralization schemes to inorganic materials pro
cessing have focused on establishing the structural and
stereochemical relationships between the organic tem
plate and the precipitating inorganic phase. The most
comprehensive studies are those of crystallization under
Langmuir monolayers (for reviews see [18,19]). Recently,
Litvin et al. [20-] demonstrated the crystallization of
[010]-oriented aragonite (CaC03) under a monolayer
of 5-hexadecylcyloxyisophthalic acid. On the basis of
molecular modeling results, they concluded that close
structural correspondence between the ac face of arago
nite and the periodic hydrogen-bonded network of the
self-assembled Langmuir monolayer was responsible for
interfacial molecular recognition and specificity of the
oriented crystallization.

To date, crystallization under Langmuir monolayers has
resulted exclusively in deposits of isolated crystals [19];
although these can be transferred to a substrate, they are
of limited technological significance. Tang and Tai [21--]
used Langmuir-Blodgett films of 9-(hexadecylimino)-4,5
diazafluorene, prepared over a range of area pressures,
as templates for the deposition of CuS04·5HzO by
dip-coating from aqueous solution (Figure 1). It is
noteworthy that at apressure where the lattice parameters
of the Langmuir-Blodgett layer matched that of (010)
CuS04·5HzO, a continuous [OlOj-oriented film resulted.

Although the above results support the central tenet
of biomineralization (that template functionalization and
supramolecular organization play a key synergistic role
in oriented crystallization), there exists counter examples
[22-25] where, for example, the extent of compression of
the Langmuir monolayer had little effect on the resulting
crystal structure or monolayers of similar headgroup
spacings resulted in different crystallographic orientations
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Formation of ultrathin oriented crystals on Langmuir-Blodgett bilayer templates. Steps (a) and (b): deposition of Langmuir-Blodgett bilayer
template with ordered hydrophilic surface. (Arrows refer to the direction of motion and velocity, V, of substrate). Step (c): dip-coating in aqueous
CuS04 solution to form oriented CuS04°5H20 film with [O'l Oj-orientation. Step (d): finished product. Adapted with permission from [21°°].
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of the crystalline deposit. Based on biomineralization
studies of calcite and aragonite (CaC03), where only
polyanionic proteins are needed to provide stereospecific
control of nucleation, orientation and phase, it has been
concluded [26,27°] that periodic, preorganized organic
arrays are not necessarily needed for regulation and
orientation of crystal growth [26,27°]. Tarasevich et 01.
[28°°] reached the same conclusion in a comprehensive
study of goethite (FeOOH) crystallization from aqueous
media. They observed the formation of continuous [020]
oriented FeOOH films on sulfonated polystyrene and
sulfonated self-assembled monolayers (vinyl terminated
alkyl (C17) silanes reacted with sulfur trioxide vapor).
Because .sulfonate sites are disordered on polystyrene,
they proved that ordered organic lattices are not necessary
to obtain oriented inorganic. structures. As the (020) or
ob planes of FeOOH have the greatest iron density,
perhaps orientation results in this case from maximization
of iron-sulfonate interactions rather than complementary
periodicity of template and crystal.

Zeolitic films and membranes
Zeolites are microporous crystalline solids characterized by
one-, two-, or three -dimensional pore channel systems
with unimodal pore size distributions. Because of their
precisely defined pore sizes, zeolite films are of interest
for molecular separation membranes, sensors, and optical
hosts [29°]. Recent research has emphasized the synthesis
of thin, oriented zeolite films in order to enhance
transmembrane flux, improve sensor response, and achieve
ordered, transparent optical hosts [30,31,32°]. The most
common strategy to prepare oriented zeoli tic films is
hydrothermal deposition from clear solutions. Orientation
appears to originate from a conformal gel layer formed
on the substrate surface [29°,32°,33]. For example, if an
MFI-type zeolite (ZSM-5) is grown on a flat substrate
under appropriate conditions, the crystals will grow within
the gel layer with their long axes parallel to the substrate
surface; this is beneficial for membrane applications [34].
This orientation is not epitaxial and is rather insensitive to

the substrate composition.

The ability to obtain a thin, continuous, oriented zeolite
film appears to depend on maintaining a continuous thin
gel layer throughout the synthesis process as oriented
crystallites, nucleated at the ge1/liquid interface, grow
and coalesce [32°]. Zeolite orientation is affected by
substrate roughness and porosity [29°,32°,33]. Although
often detrimental to the orientation of the film, this
orientational influence was exploited by Wu and co-work
ers [35°,36] who prepared a vertically oriented AFI-type
zeolite (AIP04-5) on a porous anodic alumina support,
characterized by periodic 200 nm diameter pores oriented
perpendicular to the support surface. The AFI zeolite
deposits were highly oriented, with their [001] axes
perpendicular to the support surface (i.e. parallel to the
support pore channels). It is thought [35°,36] that this
orientation results from oriented nucleation occurring

within the substrate pore channels-s-ugain a conformal
gel layer (created within the pores) may be influential in
defining orientation.

Tsapatsis and co-workers [37,38°°,39] have developed a
very prorrusmg two-step approach to forming oriented
zeolite films by utilizing particulate zeolite nanocrystals
as 'seeds'. In the first step, a colloidal nanosol is used
to prepare a supported or unsupported film. The second
hydrothermal step is used to grow the zeolite seeds
with little additional zeolite nucleation. In the case
of silicalite [38°°], the initial seed layer was randomly
oriented but the secondary growth conditions were such
that the crystallographic b axes were oriented parallel
to the film surface. Greater orientation was achieved in
zeolite A systems by growing the initial seeds to a size
of 200-300 nm at which size they acquired a cubic shape
[39]. In this case the initial seed layer exhibited a high
degree of two-dimensional order. Secondary growth using
oriented seeds resulted in continuous films exhibiting
(hOO) orientation parallel (and perpendicular) to the
substrate. Gas separation membranes prepared by this
approach exhibit excellent selectivity and flux [38°°].

Bein and Feng [29°,40,41] pioneered the use of function
alized organic surfaces to induce nucleation and growth
of oriented molecular sieve deposits. Recently Mintova
el 01. [42] used organic surfaces to orient zeolite seed
crystals on piezoelectric quartz crystalline microbalances.
Adsorption of silicalite-I crystals of 60 nm diameter onto a
siloxane surface derived from a cationic polymer resulted
in a b-axis-oriented seed layer. Secondary hydrothermal
growth resulted in a continuous, [OlO]-oriented silicalite
film with the straight pore channels of the silicalite ori
ented perpendicular to the quartz crystlline microbalances
substrate.

Oriented mesoporous films
Mesoporous molecular sieves (l\Il\IS), often referred
to in the literature as MCM (Mobil Composition of
Matterj-rype materials, are formed by a suprarnolecu
lar templating process involving amphiphilic surfactant
molecules [43,44]. According to several possible reaction
pathways, inorganic oligomers and surfactant molecules
co-organize or sequentially organize in aqueous media
to form composite structures resembling lyotropic liquid
crystalline mesophases with inorganic constituents located
adjacent to the hydrophilic head groups of the surfactant.
Removal of the surfactant templates creates ordered
mesoporous solids, usually in the form of precipitates.

Some of the most promising applications of MMS would
be in the form of films for use as membranes, sensors,
and optical hosts. Two approaches to the formation of
MMS films have been developed. Yang et al. [45°°,46°] and
Aksay et al. [47°] showed that exceeding the critical micelle
concentration of a bulk silica-surfactant solution results in
formation of hexagonal meso phases by interfacial self-as-
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Figure 2

Oriented mesoporous thin film microstructures. (a) Initial nucleation and growth of isolated oriented crystallites of hexagonal mesoporous silica
on mica [45"). (b) Cross-section of mesoporous silica film grown on mica showing hexagonal arrangement of one-dimensional pore channels
oriented parallel to the substrate surface [45"]. The bottom edge of the mesoporous structure represents the original film-liquid interface.
(c) Atomic force microscopy image of pure 18·3 ·1 surfactant (consisting of an 18·carbon aliphatic chain attached to a dimethylquaternary
ammonium connected by a three-carbon link to a trimethylquaternary ammonium) adsorbed on mica. The hexagonally close-packed micelles
probab ly serve as nucleation sites for c-axis-oriented P63'mmc mesoporous silica films [50"]. (d) Scanning electron microscopy plan view
image of oriented hexagonal mesoporous silica film prepared by dip·coating, showing macroscopic homogeneity (compare to [all [51"]. (e) Plan
view image of [210]· or [O'l-fOl-oriented cubic or three-dimensional hexagonal film prepared by transformation from a lamellar mesophase.
Central electron diffraction is of the mesophase and the square arrangement of satellite spots is from the underlying [1ool-crlentcd silicon
substrate. confirming the orientation of the film with respect to substrate. Adapted from [51"].
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sembly. These mesophases, which have one-dimensional
pore channels, form at substrate/liquid and liquid/vapor
interfaces. Atomic force microscopy investigations [47-,48]
indicated that, on mica and graphite, oriented crystallites
are nucleated by adsorbed cylindrical or hemicylindrical
micelles [49]. Continuous films form by growth and
coalescence of isolated crystallites (Figure 2a) [45--,47-],
resulting in pores oriented rigorously parallel to the
substrate surface (Figure 2b). Using a novel two-headed
surfactant, Tolbert et al. [50--] used the same approach
to prepare films with space group P63/1J11l1C both on mica
and at the air/water interface. These films, which can be
considered to consist of hexagonally close-packed spheres,

Figure 3

ellipsoids, or interconnected ellipsoids, were shown by
atomic force microscopy to be nucleated on mica by
interfacially assembled hexagonally close-packed spherical
micelles (Figure 2c). Orientation of the c-axis of the
mesophase should thus guarantee transport normal to the
substrate surface, which is necessary for membrane and
sensor applications.

A second approach, developed by Lu et al. [51--], begins
with an alcohol-water-silica sol prepared with an initial
surfactant concentration much less than the critical micelle
concentration. Alcohol/water evaporation during sol-gel
dip-coating progressively increases the concentrations of
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(a) Schematic of aragonitic portion of abalone nacre showing oriented nano-Iaminate construction. (b),Schematic representation of 'molecular
beaker epitaxy via sequential adsorption of inorganic two·dimensional anions and oligomeric or polymeric cations. Adapted with permission from
[521.



silica and surfactant, thus inducing mesophase develop
ment in the depositing film. Macroscopically homoge
neous films (Figure 2d) rapidly form in a continuous
coating process. Through variation of the initial surfactant
concentration a variety of film structures are attainable,
including hexagonal mesophases with one-dimensional
pore channels oriented parallel to the substrate, cubic
and hexagonal mesophases with three-dimensional pore
channels, and lamellar phases comprising alternating
sheets of silica and surfactant oriented parallel to the
substrate surface. Lu et al. [51--] demonstrated that
lamel1ar films could transform to highly oriented cubic
or hexagonal films during aging or heating (Figure 2e).
It is believed [51--] that the perfection and order of
transformed films are derived from those of the lamellar
precursor films. Mesophase development, therefore, via
phase transformation may represent an excellent general
route to highly oriented thin film microstructures.

Nanolaminated films
Laminated films composed of alternating organic/inorganic,
metal/inorganic, or semiconductor/inorganic layers ori
ented parallel to the substrate surface are of interest for a
variety of tribological, electronic, and optical applications
A classic example is that of seashells [4-,47-], where
the laminated polymer-aragonite composite (Figure 3a)
is twice as hard and one thousand times as tough as
the parent CaC03. In addition to the supramolecular
ternplating approach described above, various sequential
or multistep procedures have recently been developed
to achieve well-defined nanolaminates. Mallouk and
co-workers [52] and Kleinfeld and Ferguson [53,54] have
developed a process (referred to as 'molecular beaker
epitaxy' [52]) involving sequential layering of sheet-like
colloidal polyanions (e.g. exfoliated clay) with a variety
of oligomeric or polymeric cations (Figure 3b). The
interspacing of structurally well-defined sheets eliminates
interlayer penetration and ensures a constant interiayer
thickness. Although this route requires many successive
deposition (adsorption) steps to achieve practical film
thicknesses, it results in predictable heterostructures and,
as recently demonstrated by Kleinfeld and Ferguson
[54], is self-healing (i.e, defects are not propagated from
layer to layer). Even more important is its potential
for the preparation of heterosuperlattices composed of
custom-designed sequences of a diverse combination of
materials.

Kunitake and co-workers [55,56,57-] have developed
an elegant synthetic approach to the preparation of
organic-inorganic nanolarninates based on intercalation of
ions or clusters into multibilayer cast films. Multibilayer
films are formed by casting aqueous solutions of bilayer
membranes and provide ordered architectures at both the
molecular and macroscopic scale. The geometric packing
of the hydrophilic head groups, the surface charge, and
the surface density may be accurately controlled through
appropriate design of the amphiphile to provide a tailored
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intercalation host. Rather recently Kimizuka et al. [56]
demonstrated the formation of a periodically spaced,
cyano-bridged, bimetallic complex [Ni(CNkCu] via se
quential intercalation of a multi bilayer with [Ni(CN)4]Z
and aqueous copper nitrate. Maoz et al. [58] used a
preorganized, hydrogen-bonded bilayer structure as both
a host micro-reactor and template for its own replication.
Octadecyltrichlorosilane bilayers were intercalated into
pre-existing bilayers, followed by hydrolysis. After 11
successive treatments, 211-1 siloxane bilayers were created
periodically ordered on the substrate surface.

Conclusions and perspectives
The emerging trend in OIF formation is the use of
organics to control the phase, orientation, periodicity, pore
connectivity, and so on of the deposited inorganic film. It is
anticipated that this trend will continue, with even greater
emphasis on the use of self-assernbly/self-orgainzation
processes to directly form the desired microstructure in
a robust, reliable process with a minimum of steps. We
may envision· that multifunctional organics will begin
to be utilized. For example, polymerizable amphiphiles
could serve both ~s supramolecular templates and as
polymerizable monomers, and therefore enable efficient
formation of organic-inorganic polymer laminates that
mimic organic shell. Self-assembled monolayers could be
designed to both induce epitaxial crystal growth and
provide a means of patterning the oriented film deposition
process. In this regard, several groups have recently
demonstrated patterned film deposition on organic func
tionalized surfaces [59-62], but to date there seem to be
few examples of patterned oriented films [17").
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