Continuous self-assembly of organic–inorganic nanocomposite coatings that mimic nacre

Alan Sellinger*, Pilar M. Weiss*, Anh Nguyen†, Yunfeng Lu*, Roger A. Assink*, Weiliang Gong† & C. Jeffrey Brinker*

*Sandia National Laboratories and the University of New Mexico, NSF Center for Micro-Engineered Materials, The Advanced Materials Laboratory, 1001 University Blvd. SE, Albuquerque, New Mexico 87106, USA
†Department of Earth and Planetary Sciences, The University of New Mexico, Albuquerque, New Mexico 87106, USA

Nanocomposite materials are widespread in biological systems. Perhaps the most studied is the nacre of abalone shell, an orientated coating composed of alternating layers of aragonite (CaCO₃) and a biopolymer. Its lamellar structure simultaneously provides strength, hardness and toughness: containing about 1 vol. % polymer, nacre is twice as hard and 1,000 times as tough as its constituent phases. Such remarkable properties have inspired chemists and materials scientists to develop synthetic, ‘biomimetic’ nanocomposite assemblies. Nonetheless, the efficient processing of layered organic–inorganic composites remains an elusive goal. Here we report a rapid, efficient self-assembly process for preparing nanolaminated coatings that mimic the structure of nacre. Beginning with a solution of silica, surfactant and organic monomers, we rely on evaporation during dip-coating to induce the formation of micelles and partitioning of the organic constituents into the micellar interiors. Subsequent self-assembly of the silica–surfactant–monomer micellar species into lyotropic mesophases simultaneously organizes the organic and inorganic precursors into the desired nanolaminated form. Polymerization fixes this structure, completing the nanocomposite assembly process. This approach may be generalized both to other composite architectures and to other materials combinations.

Natural nanocomposites are formed by biomineralization, a templated self-assembly process in which pre-organized organic surfaces regulate the nucleation, growth, morphology and orientation of inorganic crystals. Related synthetic, so-called ‘biomimetic’, approaches include crystallization beneath Langmuir monolayers, crystallization on self-assembled monolayers, supramolecular self-assembly and sequential deposition. Of these, only the last two offer the ability to introduce periodic microstructural and compositional changes needed for nanocomposite assembly. With regard to nanolaminated structures, supramolecular self-assembly has resulted in the formation of lamellar (silica/surfactant) films or...

Figure 1 Diagrams showing evolution of nanolaminate structure during dip-coating (dip-coating rates ranged from 7.6 to 50.9 cm min⁻¹). a, Steady-state film-thinning profile established by evaporation, with vertical axes representing distance/time above sol reservoir surface, and horizontal axes showing film thickness and surfactant concentration. Preferential alcohol evaporation progressively increases the surfactant concentration, inducing micellization and concurrent incorporation of monomer and initiator (I) into the micellar interior. b, Section near A. Surfactant bilayer formation occurs below Cₛ, and provides an organized surface for subsequent cooperative assembly of the lamellar mesophase. Bilayer structure was imaged using a non-contact AFM technique following equilibration (1 h) of the silicon substrate with a silica–surfactant solution prepared with Cₛ = 5 wt%, but without addition of organic monomer/initiator. Step height created by scraping the bilayer with the AFM tip is consistent with a CTAB bilayer. c, Section near B showing the nanolaminate construction and hypothetical arrangement of surfactant, monomer, crosslinker and initiator adjacent to the oligomeric silicate surface. The chemical and structural characteristics of the coupling agent, monomers and initiators influence the local effective packing parameter of the surfactant and hence the organization of the hybrid mesophase. In the present study it is possible that the organic monomers increase the effective volume of the surfactant chains stabilizing the lamellar mesophase.
multi-bilayer composite films\(^{13}\), but such non-covalently bonded structures are mechanically unstable unless pillared\(^{14}\) (for example, lamellar silica-surfactant coatings collapse to amorphous silica on surfactant removal\(^{15}\)). Sequential deposition has been used to prepare stable inorganic/organic nanocomposites\(^{11}\), but this process requires many repeated deposition steps to build up a practical coating thickness.

Our efficient assembly process for a poly(dodecylmethacrylate) (PDM)/silica nanocomposite is based on a simple dip-coating procedure\(^2\) (see Fig. 1). The process starts with a homogeneous solution of soluble silicates, coupling agent, surfactant, organic monomers, and initiators prepared in ethanol/water solvent with an initial surfactant concentration \(c_0\) below the critical micelle concentration \(c_m\). During dip-coating, preferential evaporation of ethanol progressively enriches the concentrations of water, HCl and the non-volatile solution constituents within the depositing film. Previous optical-probe experiments performed during dip-coating of related silica/surfactant/ethanol/water sols\(^6\) indicated that the increasing concentrations of surfactant and water cause \(c\) to exceed \(c_m\) resulting in micelle formation and concurrent incorporation of hydrophobic optical probes into the micellar interiors. This evaporation-induced partitioning mechanism is used in the present study to incorporate alcohol soluble monomer(s) and initiators into micellar species. Continued evaporation promotes cooperative assembly of these (silica-surfactant-monomer) micellar species into interfacially organized liquid-crystalline mesophases, thereby simultaneously organizing both the inorganic and organic precursors into the desired laminated structure in a rapid (\(\sim 10\) s), continuous process. Organic polymerization (induced by light or heat), combined with continued inorganic polymerization, lock-in the nanocomposite architecture and covalently bond the organic-inorganic interface. Through variation of the surfactant type or its initial concentration, \(c_0\), we can exploit supramolecular self-assembly to arrive at other nanocomposite constructions.

Precursor solutions were prepared by addition of cationic surfactant, organic monomer, crosslinker, initiator and unsaturated alklyltrialkoxyxilane\(^{15}\) (used in our study as a coupling agent) to an acidic silica sol (A2**). The acid concentration used in the A2** synthesis procedure was chosen to minimize the siloxane condensation rate\(^7\), thereby promoting facile silica-surfactant supramolecular self-assembly during film deposition\(^8\). In a typical preparation, TEOS (Si(OCH\(_2\)CH\(_3\))\(_4\)), ethanol (EtOH), water and dilute HCl (mole ratios: 1 : 3.8 : 1 : 5 \(\times 10^{-3}\)) were heated at 60\(^\circ\)C for 90 min. The sol was diluted with ethanol (1 : 2) followed by addition of water and dilute HCl. Coupling agent (7-octyltrimethoxysilane, OTS, or methacryloxypropyltrimethoxysilane, MPS) was added followed by surfactant (cetyltrimethylammonium bromide, CTAB), monomer (dodecylmethacrylate, DM), crosslinker (hexanedioldimethacrylate, HDM), and initiator (ultraviolet, VUV). Thin film X-ray diffraction patterns of UV-initiated (a) and thermally-initiated (b) polymerization systems. Patterns were recorded on a Siemens D500 diffractometer using Ni-filtered CuK\(_\alpha\) radiation with \(\lambda = 1.5418\) Å in \(\theta\)–2\(\theta\) scan mode. Traces A, as-deposited (unpolymerized); traces B, polymerized; and traces C, polymerized and washed. Traces A and B in panels a and b contain second-order reflections indicative of a lamellar liquid crystalline mesophase. a. On UV irradiation of A (Hg arc lamp source with filter providing wavelengths 260–320 nm and 20 mWcm\(^{-2}\) power density), a reduction in basal cell dimension of \(\sim 14\%\) is observed (trace B), consistent with shrinkage in methacrylate-based polymerization systems\(^9\). An additional shrinkage of \(\sim 40\%\) is observed following surfactant removal by washing in ethanol, acetone and diethyl ether (trace C). b. Thermal treatments of A (120 \(\pm\) 2°C for 3 h) provide a reduction in basal cell dimension of \(\sim 16\%\) (B), with an additional shrinkage of \(\sim 54\%\) following surfactant removal (trace C).

The increased shrinkage during polymerization and washing in the thermally initiated system (b) versus the UV-initiated system (a) results from the contribution of thermally induced silica polymerization and partial volatilization of monomer during thermal treatments.

![Figure 2](image-url) Thin film X-ray diffraction patterns of UV-initiated (a) and thermally-initiated (b) polymerization systems. Patterns were recorded on a Siemens D500 diffractometer using Ni-filtered CuK\(_\alpha\) radiation with \(\lambda = 1.5418\) Å in \(\theta\)–2\(\theta\) scan mode. Traces A, as-deposited (unpolymerized); traces B, polymerized; and traces C, polymerized and washed. Traces A and B in panels a and b contain second-order reflections indicative of a lamellar liquid crystalline mesophase. a. On UV irradiation of A (Hg arc lamp source with filter providing wavelengths 260–320 nm and 20 mWcm\(^{-2}\) power density), a reduction in basal cell dimension of \(\sim 14\%\) is observed (trace B), consistent with shrinkage in methacrylate-based polymerization systems\(^9\). An additional shrinkage of \(\sim 40\%\) is observed following surfactant removal by washing in ethanol, acetone and diethyl ether (trace C). b. Thermal treatments of A (120 \(\pm\) 2°C for 3 h) provide a reduction in basal cell dimension of \(\sim 16\%\) (B), with an additional shrinkage of \(\sim 54\%\) following surfactant removal (trace C).

The increased shrinkage during polymerization and washing in the thermally initiated system (b) versus the UV-initiated system (a) results from the contribution of thermally induced silica polymerization and partial volatilization of monomer during thermal treatments.

![Figure 3](image-url) Fourier-transform infrared spectroscopy (FTIR) of nanocomposite coatings at various stages. Trace A, as-prepared (unpolymerized); trace B, polymerized (UV-irradiated); trace C, polymerized and washed; trace D, polymerized, washed, and treated in ammonium bifluoride to selectively etch the silica lamellae, and trace E, as-prepared and washed (without polymerization). Spectrum D contains all the bands of the bulk crosslinked PDM polymer plus siloxane bands due to the tri-functional siloxanes (coupling agents) that covalently bond the organic/inorganic interface and render the interfacial silica insoluble in NH\(_4\)HF\(_2\). The importance of polymerization to lock in the structure is demonstrated in trace E where all monomer is lost if washed before UV irradiation. (Coatings were prepared on Petri dishes. Powders scraped from the substrate surface were dispersed in KBr pellets for IR analysis. Similar results were obtained from powders scraped off silicon substrates).
Letters to nature

The resonance is shifted from 167 to Si(OSi)n groups surrounding the p.p.m.

...much less than that of methacrylates in this system. Residual peaks labelled with were obtained from the thermally initiated polymerization system. (79.5 MHz, 240 s delay time, 128 scans) with extent of reaction values for A and B of nucleus of interest. Samples prepared as in Fig. 3. Similar 13C and 29Si NMR results polarization (CP) MAS spectra (100.6 MHz, 2 ms CP time, 1,024 scans) of the reaction values 68.2% and 95.5%, respectively, for A and B. Qn and Tn are corresponding to the number of bridging sites coatings. Trace A corresponds to as-prepared (unpolymerized), and B to polymerized (UV-irradiated), NH4H2O-treated, and washed samples. a 13C cross-polarization (CP) MAS spectra (100.6 MHz, 2 ms CP time, 1,024 scans) of the sp3 hybridized region showing the disappearance of vinyl and methacrylate moieties of OTS and DM following polymerization (B). This demonstrates direct covalent linkages of DM to silica via vinyl-methacrylate group co-polymerization. The presence of residual vinyl resonances in B is not surprising as their reactivity is much less than that of methacrylates in this system. Residual peaks labelled with an asterisk probably correspond to DM polymer chain end groups derived from the aromatic carbons of the photo-initiator. b 29Si direct polarization MAS spectra (79.5 MHz, 240 s delay time, 128 scans) with extent of reaction values for A and B of 81.5% and 90.3%, respectively, calculated by deconvolution of the Q resonances (Q2/Q3/Q4 ratios change from 0.34/1.86/1.00 to 0.07/0.87/1.00). c 29Si CP-MAS spectra (79.5 MHz, 5 ms CP time, 1,024 scans) of the T region with extent of reaction values 68.2% and 96.5%, respectively, for A and B. Qn and Tn are tetrafuctional and trifunctional silanes, respectively, where n is a numerical corresponding to the number of bridging Si(OSi)n groups surrounding the Si nucleus of interest. Samples prepared as in Fig. 3. Similar 13C and 29Si NMR results were obtained from the thermally initiated polymerization system.

benzoin dimethylether, BME; thermal, 1,1’-azobis(1-cyclohexanecarboximide, ACHN). The final reactant mole ratios were: 1 TEOS:22 EtOH:5 H2O:0.004 HCI:0.21 surfactant:0.16 DM:0.02 HDM:0.08 OTS:0.02 initiator. All materials are based on this formulation unless noted.

Coatings were deposited on polished, (100)-silicon by dip-coating (see Fig. 1). Thicker coatings required for spectroscopic measurements were prepared by dispensing a thin layer of sol in a Petri dish followed by immediate vertical draining. After deposition, the coatings were either heated or irradiated with ultraviolet light to initiate organic polymerization. Short exposures to ammonia vapour were used to promote further condensation of the silica framework. Polymerized coatings were washed sequentially with ethanol, acetone, and diethyl ether to remove surfactant and any unpolymerized species.

Figure 2 shows a typical series of X-ray diffraction (XRD) patterns corresponding to as-deposited (unpolymerized), polymerized and washed coatings for ultraviolet (Fig. 2a) and thermally-cured (Fig. 2b) systems. The XRD pattern of the as-deposited coating in Fig. 2a is consistent with a (001)-orientated lamellar phase with basal spacing c = 3.33 nm. The lamellar mesostructure is maintained during polymerization and washing, with associated basal spacing reductions of c = 2.85 and 1.70 nm, respectively. A similar trend is observed for the thermally initiated system. The first stage of shrinkage is due to both organic and inorganic polymerization (see following discussion) while that due to washing is a consequence of surfactant removal.

Figure 3 shows a series of Fourier-transform infrared (FTIR) spectra corresponding to the successive stages of nanocomposite formation for the ultraviolet-initiated polymerization system. Three features are observed that provide evidence of organic polymerization within the nanocomposite. (1) The C=C stretch (1,637 cm−1) of the monomer and OTS virtually disappears after ultraviolet exposure, indicating C=C→C=O conversion. (2) The C=O stretching vibration in the unpolymerized film is shifted from 1,720 to 1,732 cm−1 after ultraviolet exposure, consistent with methacrylate polymerization15 (conjugated versus unconjugated C=C stretch). (3) The bandwidth of the C=O-stretching peak in the polymerized film is narrower than that of low-molecular-weight polydodecylmethacrylate (PDM), suggesting that polymerization occurs within the confined geometry of the interlamellar galleries. Spectrum D in Fig. 3 is that of the polymer residue obtained after selectively etching the silica lamellae in ammonium bifluoride (NH4HF2). For wavenumbers greater than ~1,350 cm−1, the spectrum is practically identical to that of the corresponding bulk crosslinked PDM. The presence of the Si–O stretching band in spectrum D is due to tri-functional siloxanes (T) (as confirmed by 29Si magic-angle spinning (MAS) NMR) that covalently bond the inorganic/organic interface, rendering it insoluble in NH4HF2.

Further support for organic polymerization is found from 13C NMR. As shown in Fig. 4a, the resonances at ~114–140 p.p.m. assigned to sp3 hybridized carbons of CH2(CH3)=CH2 (DM) and CH2=CH2 (OTS) virtually disappear through conversion to sp2 hybridization, and the C=O resonance is shifted from 167 to 178 p.p.m., both indicative of methacrylate polymerization.

Evidence of inorganic polymerization is obtained from FTIR (see Fig. 3) and 29Si MAS NMR (Fig. 4b, c). Integration of the envelope of peaks corresponding to the resonances of Q2, Q3 and Q4 silicon species shows that ammonia exposure causes the overall extent of siloxane condensation to increase from 80.2% to 88.4% and the extent of trisiloxane condensation (associated with the OTS coupling agent) to increase from 68.2% to 95.5%.

Nano-indentation measurements performed on PDM/silica, poly(4-methylstrene)/silica and poly(4-vinylbenzylchloride)/silica nanolaminates prepared with ~50 wt.% polymer show a three to seven times increase in indentation hardness (from 0.1–0.4 GPa to 0.8–1.0 GPa) due to combined organic/inorganic polymerization. We note that 1 GPa is the indentation hardness measured for rather dense sol–gel silica films.

The electron micrographs shown in Fig. 5 illustrate the diversity of structures attainable by this process. Figure 5a shows a transmission electron microscopy (TEM) image of a cross-section of the nanolaminated composite coating. Similar to shell, we observe a highly c-axis-orientated coating composed of successive layers of inorganic and organic polymers. Figure 5b shows a corresponding plan-view scanning electron microscopy (SEM) image, indicating that the nanocomposite coatings are featureless at micrometre length scales. Figure 5c shows a swirling pattern of organized tubules typical of hexagonal mesophases, and Fig. 5d shows a portion of a hierarchical composite coating composed of an isotropic worm-like micellar overlayer bonded to an orientated, nano-laminated underlayer.

Figure 5d provides support for formation mechanism depicted in Fig. 1. We propose that the lamellar structure originates from cooperative assembly of the swollen silica-surfactant micellar species with interfacially organized bilayers that form at the
uous accretion. The thickness of the ordered region depends on the process time-scale (established by the coating rate) and the chemical nature of the substrate surface. Compared to sequential-deposition processes, the evaporation-induced partitioning and self-assembly inherent to our process allows rapid formation of optically transparent coatings suitable for applications such as automotive finishes, hard coats, and optical hosts. The evaporation-induced partitioning approach is generally applicable to a wide range of particle sizes, from organic aggregates to nanometer-thick films. All films appear featureless on this scale. c, TEM image of swirling pattern of mesoporous silica on mica. Nature 365, 499–505 (1993).

Received 19 February; accepted 13 May 1998.

Letters to Nature

Acknowledgements. We thank S. Singh, R. Tissot, S. Rao, Y. Guo and D. Schmale for assistance with some of the experiments. This work was supported in part by the UNM/NSF Center for Micro-Engineered Materials, DOE Basic Energy Sciences, and UNM/NSF Center for Micro-Engineered Materials, DOE Basic Energy Sciences, and UNM/NSF Center for Micro-Engineered Materials, DOE Basic Energy Sciences, and UNM/NSF Center for Micro-Engineered Materials, DOE Basic Energy Sciences, and UNM/NSF Center for Micro-Engineered Materials, DOE Basic Energy Sciences.

Correspondence and requests for materials should be addressed to C.J.B. (e-mail: cjbrink@sandia.gov).

Rapid eruption of Skye lavas inferred from precise U–Pb and Ar–Ar dating of the Rum and Cuillin plutonic complexes

M. A. Hamilton‡, D. G. Pearson†, R. N. Thompson‡, S. P. Kelley‡ & C. H. Emeleus†

* Continental Geoscience Division, Geological Survey of Canada, Ottawa, Canada, K1A 0E8
† Department of Geological Sciences, Durham University, South Road, Durham DH1 3LE, UK
‡ Department of Earth Sciences, The Open University, Milton Keynes, MK7 6AA, UK

The interpretation of rocks of the British Tertiary Volcanic Province has played an important role in the historical development of many concepts in igneous petrology. Exposures of lavas, sub-volcanic rocks and plutonic complexes have allowed a detailed understanding of the field relationships between such units in the context of flood-basalt magmatism1–3. Nevertheless, age control has been a source of much controversy and a limiting factor in comparing these relationships to recent developments in the theoretical modelling of magmatism within continents4. Here we report precise 206Pb/238U zircon ages of 60.53 ± 0.08 Myr (2σ) for the Rum basic/ultrabasic pluton and 58.91 ± 0.07 Myr for the Cuillin gabbros, Skye, which tightly constrain eruption of the >1.5-km-thick Skye lava succession (SMLS)5–7.

The remnant of an important surface expression of the magmatism related to rifting of the northeast Atlantic continental margin due to impingement of the Iceland mantle plume 63 Myr ago8,9. Geochemical studies on Skye lavas show that they are dominated by transitional to alkali-basalts of the SMLS10. A later, tholeiitic magma type, Preshal-More basalt, was produced in large volumes but is now mostly preserved as dykes11. Flows of Preshal-More basalts overlain the SMLS and have compositions more akin to mid-ocean-ridge basalt (MORB). The temporal change in major- and trace-element composition between the SMLS and Preshal-More magma types12 has been interpreted in terms of progressive lithospheric thinning beneath Skye13. Determination of the timespan of lava eruptions will

Figure 1 Field and chronostratigraphy of magmatism on Rum, Skye and the Small Isles. a, Diagrammatic representation of simplified igneous stratigraphical relationships established on the basis of field relations (see ref. 3 for summary). Radiometric ages are given with method; asterisk shows new dates; shown are data from this work and ref. 8; errors are 2σ. For a more comprehensive summary of ages and their source see ref. 9. b, Comparison of Rum-Skye basic/ultrabasic complex U–Pb zircon ages with other ages for Skye igneous events and Mull, Muck and Eigg lava suites. Squares indicate Rb-Sr isochrons, triangles are 40Ar/39Ar step heating ages, and circles are U–Pb zircon ages; filled symbols are data from this study. For sources of dates see Table 1 and refs 3, 8, 9, 17, 25. Arrows indicate 2σ uncertainties in all cases. Chronostratigraphic timescale is from ref. 26. Maximum likely duration of Skye lavas (SMLS) shown by shading.