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Porous inorganic materials 
C Jeffrey Brinker 

The field of porous, inorganic materials is experiencing 

explosive growth, as is shown by more than 6000 literature 

citations since 1994 along with numerous recent symposia 

and workshops that have been devoted to this topic. 

Much of the recent interest has been fueled by new 

synthetic strategies, such as ‘supramolecular ternplating’, 

that have enabled precise engineering of pore size, shape, 

and connectivity on the mesoscopic scale. In general, 

template-based approaches involving the cooperative 

organization of organic-inorganic assemblies as intermediates 

are emerging as a promising conceptual basis for future 

developments in the field of porous inorganic materials, such 

as the synthesis of hierarchical morphologies that mimic the 

intricate structures found so often in nature. 
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Abbreviations 
cmc critical micelle concentration 

CP MAS cross polarization magic angle spinning 
LC liquid crystalline 
MC% Mobil composition of matter 
MMS mesoporous molecular sieve 
SDA structure directing agent 

TEOS tetraethylorthosilicate 
UTD-1 University of Texas at Dallas number 1 
XRD X-ray diffraction 

Introduction 
In an attempt to briefly review recent advances in porous 
inorganic materials, I have limited the scope of this article 
to include mainly papers published since January 1995 
and to exclude porous carbons, which from my point of 
view may be considered organic. This article is organized 
according to pore size, in agreement with the three classes 
of porous materials as defined by IUPAC [l]: firstly, 
microporous materials, in which the pore diameter dp is 
less than Znm; secondly, mesoporous materials, in which 
2 nm 5~‘~ 5 50 nm; and, thirdly, macroporous materials, in 
which dp>50 nm. Following a brief discussion of the 
corresponding energetics, these classes of porous materials 
are discussed in turn with respect to new materials, new 
understanding, and new applications. 

Energetics 
Navrotsky et al. [P] recently reported the enthalpies of 
formation of a series of high silica content zeolites and 
several mesoporous silicas prepared with pore diameters 

in the range 3-5nm. They found these materials to 
be only 8-14 kJ/mol-1 less stable energetically than 
crystalline quartz, despite their appreciable differences 
in molar volume and in related parameters, such as 
framework density and pore size. This finding was 
considered ‘good news for synthesis’, for it implied that 
there are no stringent energetic limitations to the myriad 
possible structural types that can form. This energetic 
paricy sets the stage for new synthetic efforts in the 
development of porous inorganic materials: as there are 
no large thermodynamic biases, synthesis strategies to 
develop new porous materials are limited only by the 
‘ingenuity of the chemist in identifying appropriate kinecic 
pathways for their formation [Z’]‘. Indeed, much of the 
recent progress in porous inorganic materials has involved 
the development of new classes of structure-directing 
(cemplating) agents, that induce the formation of a 
particular structure through noncovalent electrostatic, van 
der Waals, or hydrogen-bonding interactions. 

Microporous inorganic materials 
Microporous inorganic materials comprise crystalline ze- 
olice molecular sieves and related solids (in which the 
porosity is defined by a periodic crystalline framework) 
along with amorphous materials such as ‘imprinted’ silicas 
and inorganic gels, typically formed by sol-gel processing 
techniques. Current interest in microporous materials con- 
tinues to lie in molecular separation, via size-dependent 
filtration or sieving, along with shape-specific molecular 
recognition, adsorption, and catalysis. 

Much progress in the area of microporous materials 
has resulted from an improved understanding of the 
roles of structure-directing agents (SDAs) in zeolite 
synthesis. Lobo et al. [3”] summarize the general 
correlation between use of SDAs and high silica zeolite 
structures as follows: first, in the absence of SDAs 
(hydrothermal) silicate syntheses form dense crystalline 
or layered materials; second, small molecules - amines 
in particular- direct the formation of clathrasils (cages 
of polyhedra that can be considered zeolites with zero- 
dimensional pores); third, linear molecules usually form 
1 D, lo-ring molecular sieves; fourth, branched molecules 
form multi dimensional, medium pore size zeolites (dp 

-4-7 A); and fifth, large polycyclic molecules produce 
large pore 1D zeolites. According to studies by Burkett 
and Davis [4,‘5*] and Zones and co-workers [3”], 
key features of SDAs are moderate hydrophobicicy and 
the ability to form strong inorganic-organic complexes 
via noncovalent interactions (such as van der Waals 
contact*). Moderate hydrophobicity favors the restruccur- 
ing of water to form a hydrophobic hydration sphere 
that accommodates the SDA, while maintaining a fully 
hydrogen bonded network of water. Replacement of water 
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in the hydration sphere with inorganic (e.g. silicate) 
species generates the inorganic+rganic assembly that 
translates the geometry of the SDA into the zeolite 
pore architecture. The concomitant release of ordered 
water along with the establishment of intermolecular 
van der Waals interactions provides the thermodynamic 
driving force to form the. inorganic-organic assembly. 
The strength of intermolecular interactions between 
the SDA and framework precursors largely governs the 
efficacy of the SDA in inducing the formation of a 
prescribed structure. For example, in studies of tetraalkyl 
ammonium- and hexanediamine-mediated syntheses of 
pure silica zeolites, Burkett and Davis [SO] used *H-z% 
cross polarization (CP) MAS NMR to show that structure 
direction occurred only when lH-z’%i CP NMR signatures 
were observed, implying close association of the SDA and 
silica framework. When such signatures were not observed, 
the occluded organic molecule served to create a cavity, 
but there was no structure direction effect, that is no 
unique relationship between the template molecule and 
the resulting crystal phase. 

A significant advance in the preparation of high-silica 
zeolites with large pore size is the synthesis of UTD-1 
(University of Texas at Dallas number 1) by Balkus 
and co-workers (6**,7,Pl]. The structure of UTD-1 
can be described as a fully condensed TO412 network 
containing a 1D pore system built of extra large elliptically 
shaped pores circumscribed by 1Cmembered rings ( 
171; see Fig. 1). The approximate free diameter of 
the large pore is 7.5x 10 A. UTD-1 was synthesized 
using a novel organometallic complex, bis-(pentamethyl- 
cyclopentadienyl)-Co(II1) hydroxide, as an SDA, although 
it was concluded [6**] that there was not a perfect match 
between the shape of the pore and the complex (evidence 
of the fact that the understanding of SDAs in zeolite 
synthesis is in its infancy). Importantly, UTD-1 exhibits 
exceptional thermal and hydrothermal stability compared 
with large pore aluminophosphates such as VPI-5, AlPO4- 
8, and cloverite. High temperature XRD showed no loss of 
crystallinity in UTD-1 below lOOo’C, even in the presence 
of 23 torr HzO. In addition, the aluminum-containing form 
of UTD-1 possesses Brpmsted-acid sites comparable in 
strength to those of other high-silica zeolites. 

Zeolites exhibit precise control of pore size by virtue of 
their crystalline structures and thus can be considered 
ideal candidate materials for the preparation of inorganic 
membranes. Progress in the development of zeolite 
membranes has been slow,’ mainly because of difficulties 
in processing zeolites as ultra thin, defect-free films on 
porous supports. Bein [8*] and Jansen and Coker [9] have 
recently reviewed this topic. The current status is that 
zeolitic membranes of ZSMJ and silicalite-1 (the all-silica 
form of ZSM-5) have been fabricated on a small scale 
(several square centimeters) and tested (mainly) by single 
gas permeance measurements [10*,11,12]. Yan et 01 (10’1 
and Noble and Falconer [ll] have shown evidence for 

Figure 1 

Topology of the organometallic-free UTD-1 zeolite as viewed 
along the large 14-membered ring channels (~010 > zone axis). 
The main structural building unit within the pore walls consists of 
one six-membered ring surrounded by four five-membered rings. 
These units are linked via 4-membered rings to create infinite 
two-dimensional layers parallel to the a-c plane. Reproduced with 
permission from [7J. 

size-dependent molecular separation; for example, they 
observed gas permeation ratios for Hz: isobutane and 
n-butane : iso-butane of 151 and 18 at 303K, and of 54 and 
31 at 458K, respectively. It was proposed (lo*,1 l] that at 
low temperature, transport is dominated by adsorption and 
at higher temperatures by diffusion. Although supported 
films of zeolite A [13] and zeolite L [14*] have been 
reported, permeance data are lacking. In general more 
thorough studies of zeolite thin film processing, such as 
those performed by Jansen et a/. [ 15.1, are sorely needed. 

Despite having a pore size distribution, rather than a fixed 
pore size like zeolites, amorphous microporous materials 
formed by sol-gel processes have several advantages 
for applications in membranes, sensors, and catalysis. 
First and foremost, compared to zeolites it is easy to 
prepare defect-free, ultrathin films on porous supports 
[16’]. Second, the extraordinary flexibility of the siloxane 
backbone should enable precise molding of the framework 
by template molecules or ligands. Recent progress in 
molecular imprinting of amorphous silicas has been re- 
viewed by Davis ef a/. [ 17”], who concluded that, although 
there are indications for the use of amorphous silicas 
in molecular recognition and catalysis from imprinted 
sites [18], site heterogeneities are prevalent and limit 
reaction selectivities. In related papers, Raman and I 
[19], Cao ef a/. [20*], and Raman et o/. [21**] report on 
template-based approaches to prepare microporous silica 
membranes wherein covalently bonded organic ligands are 
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occluded in a dense silica matrix and removed (pyrolyzed) 
to create a microporous network. It was concluded that due 
to the amphiphilic nature of the covalently bonded hybrid 
framework, only under a limited set of conditions (that 
depend strongly on [template] ligand-framework-solvent 
interactions) is phase separation suppressed enabling 
the faithful replication of the template ligands (pore 
size= ligand size). It was also observed that, depending 
on the extent of condensation and viscosity of the silica 
matrix at the pyrolysis temperature, pyrolysis might be 
accompanied by considerable shrinkage, resulting in a 
reduction of pore volume and size. My colleagues and I 
[16*] have also used noncovalencly bonded templates to 
create amorphous, microporous membranes. We observed 
that under certain (sol-gel) processing conditions, the 
membrane pore size was related to the size of the solvent 
molecules (water, methanol, ethanol, propanol etc.) and 
suggested a solvent templating mechanism to explain this 
observation. 

Mesoporous inorganic materials 
Mesoporous inorganic materials comprise inorganic xero- 
gels (e.g. the common silica desiccants), pillared clays, 
and the mesoporous molecular sieves (MM%) recently 
discovered by researchers at Mobil, referred to in the liter- 
ature as the MCM (Mobil composition of matter) family of 
materials. MMSs have received enormous attention from 
the research community since their announcement by 
Kresge et a/. in 1992 [‘ZZ], and there have been numerous 
recent reviews of this subject [21*,23,24*,25’]. In the past 
two years advances have been made in understanding and 
exploiting the supramolecular templating process used in 
MMS formation, developing new synthesis procedures, 
extending the compositional range beyond silicas, and 
processing MM% as thin films. 

MMSs are high surface area amorphous solids (up to 
1400 mzg-1) characterized by monosized cylindrical pores, 
ranging from 20 to 100 A in diameter, organized into 
periodic arrays that often mimic the liquid crystalline 
phases exhibited by surfactants [22,26]. MMS synthesis 
procedures typically require four reagents: water, surfac- 
tant, a soluble inorganic precursor, and catalyst. MMSs 
form (as precipitates) in seconds to days [26,27] at 
temperatures ranging from 180°C to as low as -14°C 
depending on the inorganic precursor. Pure silica MMSs 
exhibit three structure types: hexagonal (referred to as 
H or MCM-41) a 1D system of hexagonally ordered 
cylindrical pores; cubic (C), a 3D, bicontinuous system of 
pores; and lamellar, a 2D system of silica sheets interleaved 

by surfactant bilayers [22,26]. 

Over the past several years various MMS synthetic 
pathways have been elucidated [24*]. Experimentally, it 
has been shown that MCM-41-type phases form under 
conditions in which the surfactant- before the addition 
of the silica source-is in any of the following forms: 
free (where the surfactant concentration, c, is less than 

the critical micelle concentration cmcl) [28]; in the form 
of spherical micelles (cmcl <c<cmc2) [27], in the form 
of cylindrical micelles (cmc <c < LC [liquid crystalline]) 
[29], or in the form of liquid crystalline phases such as 
Ht (c=LC) [30’,31] (see Fig. 2). These findings indicate 
that silica does not in general simply petrify a pre-existing 
LC array but instead cooperatively co-assembles with the 
surfactant to form LC phases during the course of the 
synthesis. Specific details of the co-assembly mechanism 
are still controversial. Three models have been postulated: 
a puckering layered model [32], a silicate rod assembly 
model [30*], and a cooperative charge density matching 
model [33]. Regardless of the specifics, it has been shown 
that silica condensation is not essential to the assembly 
process. Using anionic cubic octamers, SigO&, Firouzi 
et a/. [34**] demonstrated reversible lamellar + hexagonal 
phase transformations. Electrostatic interactions are also 
nonessential to the assembly process. Tanev and Pinnavaia 
[35”] and Bagshaw et al. [36*] have demonstrated the 
formation of MMS using two neutral routes based on 
hydrogen bonding and self-assembly of nonionic primary 
amine [35”] or polyethylene oxide [36*] surfactants and 
neutral oligomeric silica precursors. Tanev and Pinnavaia 
[37’] compared MMSs prepared with ionic and neutral 
surfactant templates. They concluded that, although the 
ionic surfactant templated MMSs usually have greater 
order, the neutral surfactant templated MMS has thicker 
walls, a greater extent of condensation, improved thermal 
stability, and greater textural mesoporosity and therefore 
might perform better in applications requiring thermal 
stability and rapid diffusion, like catalysis. In addition, the 
combination of a neutral framework and extensive conden- 
sation permits template removal by solvent extraction. 

In the past few years considerable effort has been put 
into synthesizing multicomponent and nonsilica MMSs 
[27] for catalytic applications, as a result of their higher 
surface areas and greater accessibility of active sites 
compared to zeolites [25’]. Particular attention has been 
paid to titanium incorporation in silica MMSs, based 
on expectations that, by analogy to the ability of TS-1 
(titanium-doped high silica ZSM-5) to selectively oxidize 
alkanes, alkenes, and alcohols [38], titania-silica MMS 
(Ti-MMS) may perform shape-selective oxidation of larger 
organic molecules. Ti-MMS have been synthesized by 
incorporation of titanium into the silica framework [39,40] 
or by grafting titanocene complexes on preformed silica 
MMS [41’], the latter procedure providing higher surface 
concentrations and accessibility of catalytic sites. Oxida- 
tion studies have confirmed the ability of Ti-MMS to oxi- 
dize large molecules. For example, selective epoxidation 
of norborene using tertbutylhydroperoxide as an oxidant 
could be achieved with Ti-MMS but not with TS-1, due 
to the bulky nature of the reactants 1401. Additionally, 
shape-selective conversion of 2,6-di-tert-butyl phenol has 
been demonstrated (391 along with enhanced activity 
when titanium is grafted as a pendant catalyst on the 
pore interior [41’]. In contrast, when comparing oxidation 
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Figure 2 
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Schematic phase diagram for Cl eTMA(tetramethylammonium) Br 
in water. Critical micelle concentration 1 (CMCl) is exaggerated to 
higher concentration. Reproduced with permission from [21 ‘I. 

reactions for small molecules, such as the epoxidation of 
hexene by HzOz, TS-1 exhibits much higher activity than 
Ti-MMS [42], and reactions that occur readily with TS-1, 
such as primary amine oxidation, practically do not occur 
over Ti-MMS [25*]. The reasons for these differences 
in reactivity ‘are presently unclear but altered framework 
crystallinity, hydrophilicity, and titanium redox potential 
may be contributing factors [25*]. 

With regard to nonsilica frameworks and hybrid structures, 
several recent reports are noteworthy. Antonelli and Ying 
[43”,44*] developed a ligand-assisted ternplating scheme 
to prepare pure niobium and tantalum oxide MMSs that 
were stable to surfactant removal and hydrothermally 
stable to temperatures ranging from 300-8OO”C. Neutral 
primary amine surfactants were pre-reacted with metal 
alkoxides to form new metal organic surfactant molecules, 
which were hydrolyzed in a second step to produce 
pure niobium or tantalum MMS. The surfactant was 
removed by acid washes that cleaved the metal-nitrogen 
bond. Ciesla et a/. 1451 developed phosphate and sulfate 
complexation schemes to stabilize zirconium oxide MMSs. 
Phosphate and sulfate ions assisted in the formation 
of zirconia-surfactant composites and promoted further 
cross-linking of the zirconium 0x0 species, stabilizing the 
porous structure to 500°C. Using tetraalkoxysilane and 
substituted organoalkoxysilane precursors, Burkett and 
Mann [46*] prepared hybrid inorganic-organic MMSs con- 
taining covalent Si-phenyl and Si-n-octyl bonds. Kloetstra 
eta/. [47*] hydrothermally treated calcined, aluminosilicate 
MMSs with tetrapropylammonium hydroxide and formed 

Al-Si Mh4Ss containing zeolitic ZSM-5 micro-domains. 
These composite materials were shown to be able 
to crack hexane under conditions where commercial 
aluminosilicate catalysts and the parent Al-Si MMS were 
not. 

For potential applications in separation technology or 
catalysis, MMS have been prepared as both supported and 
free-standing films. Yang eta/. [48”] described approaches 
to prepare ordered MMS films at crystal (mica)/liquid 
interfaces or air/liquid interfaces [49*]. In each case it 
was proposed that surfactant ordering at the interface 
conferred structure on the developing film. The pore 
channels were observed to be oriented parallel to the 
interface, which may prove problematic for applications 
in membranes. Ogawa [SO] reported a simple sol-gel 
procedure for preparing MMS films. Sols were prepared by 
surfactant addition to prehydrolyzed tetramethoxysilane 
and deposited by spin-coating to form thin films. No detail 
was provided concerning the mechanism of film formation. 

Aerogels and macroporous inorganic 
materials 
Aerogels are highly porous materials normally formed 
from wets gels by extraction of the pore fluid above its 
critical temperature and pressure in an autoclave. Drying 
therefore is accomplished in the absence of drying stress 
(capillary stress), preserving the hierarchical (often fractal) 
structure of the wet gel. A major recent breakthrough in 
aerogel processing has been the development of an ambi- 
ent temperature/pressure drying procedure that dispenses 
with autoclaves altogether [51”,P2]. The ambient drying 
procedure involves derivatization of the hydroxylated 
surface of an elastic, wet gel with alkylsilanes (e.g. 
trimethylsilane). Subsequent evaporative drying initially 
causes the gel to shrink as it is subjected to capillary stress. 
The methylated surface prevents further condensation 
reactions from occurring, however, so at the final stage of 
drying, when the capillary stress vanishes, the gel ‘springs 
back’, re-creating the porosity of the wet gel state. The 
final dried gels exhibit densities, pore volumes, and surface 
areas comparable to those of conventional aerogels. Other 
advances in aerogel processing include the synthesis of 
multicomponent, nonsilica (see e.g. [52,53,54]), and hybrid 
organic-inorganic aerogels [55,56]. 

Macroporous materials contain pores larger than 50nm 
in diameter, the same as the dimensional scale of many 
natural materials, such as the mineralized exoskeletons 
of radiolaria and diatoms. Ozin and co-workers [57*-l 
recently synthesized lamellar aluminophosphates exhibit- 
ing bowl-shaped and honeycomb patterns on the same 
macroscale and with much the same subtlety as those seen 
in nature. The synthetic procedure extended concepts of 
micellar and LC ternplating to larger vesicle templates. 
Introduction of a tetraethylene glycol cosolvent was 
proposed to induce a lamellar+vesicular phase transition. 
Further mineralization of the vesicles and the sticking of 
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Table 1 

Pattern replication in inorganic morphosynthesis. 

Process Pathway Examples 

Transcriptive synthesis Self-assembly+Transcription-tReplication Tubular/lamellarlmesoporous silica, thin films, CdS arrays 

Synergistic synthesis Coadaptation+Coassembly+Replication Mesoporous silica, metal oxides 

Metamorphic reconstrucGon Coassembly+Replication+ReconsWuction Microskeletal calcium phosphate, silica 

Microphase separation Coassembly+Evolution+Replication Mesolamellar aluminophosphate, cellular calcium carbonate 

Systems synthesis (in general) Molecular assembly+Supramolecular assembly+Microphase assembly+System assembly 

‘Reproduced with permission from [59”1. 

vesicles to growing aluminophosphate spheres accounts for 

bowl-shaped features decorated with concentric rings and 

platelets. Similarly, Walsh and Mann [%*I used biliquid 

foams as patterned assemblies to synthesize cellular 

calcium carbonate (aragonite) in a manner superficially 

analogous to the packing of areolar vesicles in the 

biomineralization of diatoms. 

Future directions: hierarchical inorganic 
materials 
Beyond improving the synthesis and processing of micro- 

porous, mesoporous, and macroporous inorganic materials, 

future directions in porosity engineering will inevitably 

arise from the synthesis of complex, hierarchical micro- 

structures designed with controlled porosity on several 

length scales. Such structures are common in nature, 

but synthetic pathways to their efficient preparation in 

the laboratory are lacking. Recently Mann and Ozin 

[59”] delineated four processes for pattern replication 

during inorganic ‘morphosynthesis’ (see Table 1). The 

idea is to use appropriate ternplating agents, namely, 

molecules, polymers (e.g. block copolymers), micelles, 

vesicles, and foams, to orchestrate the positioning, in- 

terconnection, and stabilization of inorganic building 

blocks at the microscale, mesoscale and macroscale. 

Such organic ternplating strategies could in principle 

be combined with physical phenomena such as fractal 

aggregation [ 16’1, ionic strength-, temperature-, or solvent 

induced shrinking and swelling (observed for organic 

and hybrid gels [16-l), capillary stress-induced collapse 

(and re-expansion) induced by capillary stress [Sl”], and 

surface patterning (using, for example, self-assembled 

monolayers or microlithography) to create multifunctional 

complex materials. The challenge will be to devise 

concurrent or sequential processing strategies that induce 

the progressive evolution of structure in a predetermined 

manner. To date some fascinating examples of hierarchical 

materials exist [57”,59**,60*,61*] (see Fig. 3), but our 

abilities to pre-design the structure and then engineer the 

construction are at a developmental stage. 
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Figure 3 

Synthesis of complex hierarchial materials. (a) Illustration of vesicle 

ternplating of a hierarchical inorganic material. Mesolamellar 

aluminophosphate vesicles undergo fusion, fission, reshaping and 

collapse to form synthetic patterns with complex form. (b) Scanning 

electron microscopy image showing complex surface patterns formed 

by mesolamellar aluminophosphate vesicles during hydrothermal 

synthesis. Scale bar=1 0 pm. Reproduced with permission from 

[57”1. 
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